
mDrive User Manual
Release 3.1.2

LLC STELM

Aug 12, 2024

CONTENTS:

1 About 1
1.1 General information . 1
1.2 Benefits . 2

1.2.1 Main benefits . 2
1.2.2 All benefits . 2

1.3 General technical specifications . 3
1.4 Specifications . 4

1.4.1 Motor requirements . 4
1.4.2 Electric specifications of the controller . 4
1.4.3 Rotation control features . 4
1.4.4 Additional firmware features . 5
1.4.5 Additional features available via DVI-I connector . 5
1.4.6 Programming the controller . 6

2 Safety instructions 7

3 Quick start guide 9
3.1 Overview and getting started . 9

3.1.1 Introduction . 9
3.1.2 Requirements . 10
3.1.3 Software installation and startup procedures . 12
3.1.4 Getting started with mDrive Direct Control software . 14
3.1.5 Functional test . 16
3.1.6 Control from user applications . 16

3.2 Example of a motor connection . 16
3.2.1 General case . 17
3.2.2 Example . 19

3.2.2.1 Preparation . 19
3.2.2.2 Connecting the motor and encoder to the controller 20

3.3 Manual profile setting . 26
3.3.1 Introduction . 26
3.3.2 Getting started . 27
3.3.3 Nominal current setting . 27
3.3.4 Basic parameters setting . 28
3.3.5 Hardware limit switches setting. Homing. 29
3.3.6 Encoder parameters setting . 33
3.3.7 Setting the kinematic characteristics of the controller . 35
3.3.8 Working with user units . 35

3.4 Calculation of the nominal current . 36
3.4.1 Calculation based on the parameters of unipolar full step mode 36

i

3.4.2 Calculation based on the parameters of bipolar full step mode 36
3.4.3 The relationship with an rms current . 36
3.4.4 Amplitude and rated current for BLDC . 37
3.4.5 Setting the nominal current . 38

4 Technical specification 39
4.1 Appearance and connectors . 39

4.1.1 Controller board . 39
4.1.1.1 Dimensions and arrangement . 39
4.1.1.2 Controller board connectors . 39

4.1.1.2.1 Stage connector . 39
4.1.2 One axis system . 41

4.1.2.1 Connectors . 42
4.1.2.1.1 Stage connector . 42
4.1.2.1.2 Power supply connector . 43
4.1.2.1.3 Data connector . 44
4.1.2.1.4 Joystick connector . 45

4.1.3 Multi-axes system . 46
4.1.3.1 Enclosure view . 46
4.1.3.2 Connectors . 46

4.1.3.2.1 Stage connector . 46
4.1.3.2.2 Power supply connector . 47
4.1.3.2.3 Data connector . 49
4.1.3.2.4 Joystick connector . 49

4.2 Kinematics and rotation modes . 50
4.2.1 Predefined speed rotation mode . 50
4.2.2 Rotation for predefined point . 51
4.2.3 Predefined displacement mode . 52
4.2.4 Acceleration mode . 52
4.2.5 Backlash compensation . 53
4.2.6 Rotation reversal . 54
4.2.7 Recommendations for accurate rotation . 54
4.2.8 PID-algorithm for BLDC engine control . 54

4.2.8.1 PID-algorithm description . 54
4.2.8.2 Particular properties of the algorithm . 55

4.2.8.2.1 PID regulator coefficients . 55
4.2.8.2.2 Reaching target position . 55

4.2.8.3 PID regulator manual tuning . 55
4.2.8.3.1 Steps to adjust the coefficients: . 56

4.2.9 Feedback EMF . 57
4.2.9.1 Advantages . 57
4.2.9.2 Behavior of the engine when exposed to an external force 57
4.2.9.3 Selecting L, R, and backEMF parameters for EMF algorithm 57
4.2.9.4 The choice of PID coefficients for EMF . 59

4.2.9.4.1 Operation algorithm . 59
4.2.10 Feedback encoder . 60
4.2.11 Feedback encoder mediated . 60
4.2.12 Stop motion modes . 60

4.2.12.1 Immediate stop . 60
4.2.12.2 Stop with deceleration . 60

4.3 Main features . 61
4.3.1 Supported motor types . 61

4.3.1.1 Stepper motors . 61
4.3.1.2 BLDC motors . 61

ii

4.3.1.3 Engine selection criteria . 62
4.3.2 Motor limiters . 63
4.3.3 Limit switches . 64

4.3.3.1 Limit switches designation . 64
4.3.3.2 General settings . 64
4.3.3.3 Programmable motion range limitation . 64
4.3.3.4 Hardware limit switches . 65
4.3.3.5 Limit switches connecting instructions . 65
4.3.3.6 Limit switches location on translators . 65

4.3.4 Automatic Home position calibration . 66
4.3.4.1 Standard homing algorithm . 66
4.3.4.2 Accurate additional calibration . 66
4.3.4.3 Fast homing algorithm . 67
4.3.4.4 Autocalibration features . 67

4.3.5 Operation with encoders . 68
4.3.5.1 Application of encoders . 68
4.3.5.2 What is quadrature encoder? . 68
4.3.5.3 Controller’s features . 69
4.3.5.4 Encoder connection . 69

4.3.5.4.1 Operation with long cables . 70
4.3.5.4.2 Automatic encoder type detection . 70

4.3.6 Revolution sensor . 70
4.3.6.1 Connection diagram . 70

4.3.7 Steps loss detection . 71
4.3.8 Power control . 72

4.3.8.1 Current consumption reduction . 72
4.3.8.2 The motor power shutdown . 72
4.3.8.3 Time delay calculation specifics . 72
4.3.8.4 Jerk free function . 73

4.3.9 Critical parameters . 73
4.3.10 Saving the parameters in the controller flash memory . 74
4.3.11 User defined position units . 74
4.3.12 Usage of a coordinate correction table for more accurate positioning 74

4.4 Safe operation . 75
4.4.1 Movement range bounds and limit switches . 76
4.4.2 Movement range limiters . 76
4.4.3 Critical Parameters . 76
4.4.4 Operation with Encoder . 76

4.5 Additional features . 77
4.5.1 Indication . 77

4.5.1.1 Controller status . 77
4.5.2 Operations with magnetic brake . 78

4.5.2.1 Description of operation . 78
4.5.2.1.1 Controller operating sequence during stage shutdown. 78

4.5.2.2 Magnetic brake connection diagram . 79
4.5.3 Joystick control . 79

4.5.3.1 General information . 79
4.5.3.2 Connection diagram . 80

4.5.3.2.1 Connecting a joystick whose voltage does not exceed 3.3 V 81
4.5.3.2.2 Connecting a 5 V joystick . 81

4.5.4 Left-Right buttons control . 81
4.5.4.1 Connection diagram . 82

4.5.4.1.1 One-axis and multi-axis systems . 82
4.5.5 TTL synchronization . 82

iii

4.5.5.1 Principle of operation . 82
4.5.5.2 Connection . 84
4.5.5.3 Sync in . 84
4.5.5.4 Sync out . 86
4.5.5.5 Connection diagram . 90

4.5.6 Multiaxis system design . 90
4.5.7 General purpose digital input-output (EXTIO) . 90

4.5.7.1 Connection diagram . 91
4.5.8 General purpose analog input . 92

4.5.8.1 Connection diagram . 92
4.5.8.1.1 One-axis and multi-axes systems . 92

4.5.9 Saving the position in FRAM memory . 92
4.6 Secondary features . 92

4.6.1 Zero position adjustment . 92
4.6.2 User-defined position adjustment . 93
4.6.3 Controller status . 93

4.6.3.1 Movement status . 93
4.6.3.2 Motor power supply status . 93
4.6.3.3 Encoder status . 94
4.6.3.4 Motor windings status . 94
4.6.3.5 Position status . 94
4.6.3.6 Controller power supply status and temperature 94
4.6.3.7 Status flags . 95
4.6.3.8 Digital signals status . 95

4.6.4 USB connection autorecovery . 96

5 mDrive Direct Control application User’s guide 98
5.1 About mDrive Direct Control . 98
5.2 Main windows of the mDrive Direct Control application . 98

5.2.1 mDrive Direct Control Start window . 98
5.2.2 mDrive Direct Control Main window in single-axis control mode 101

5.2.2.1 Motion Control Unit . 103
5.2.2.1.1 Movement without specifying the final position 103
5.2.2.1.2 Movement to the target point . 104
5.2.2.1.3 Target position for motion commands 104

5.2.2.2 Controller and motor status . 104
5.2.2.2.1 Controller Power Supply . 104
5.2.2.2.2 Motor status . 105
5.2.2.2.3 Program status . 106

5.2.2.3 Group of application control buttons . 106
5.2.2.4 Status bar . 106

5.2.3 mDrive Direct Control Main window in multi-axis control mode 107
5.2.3.1 Motion control block . 108
5.2.3.2 Virtual joystick block . 109
5.2.3.3 Control block . 110
5.2.3.4 Block of status indicators for controllers and motors 111

5.2.4 Application settings . 113
5.2.5 Charts . 114

5.2.5.1 Values displayed on the charts . 116
5.2.5.2 Button functions . 116
5.2.5.3 Limit value . 117

5.2.6 Scripts . 117
5.2.6.1 Button functions . 118

5.2.7 mDrive Direct Control log . 119

iv

5.3 Controller Settings . 120
5.3.1 Settings of kinematics (stepper motor) . 120

5.3.1.1 Motor parameters - directly related to the electric motor settings 122
5.3.1.2 Motion setup - movement kinematics settings . 122
5.3.1.3 Feedback settings . 122

5.3.2 Motion range and limit switches . 123
5.3.3 Critical board ratings . 124
5.3.4 Power consumption settings . 126
5.3.5 Home position settings . 128
5.3.6 Synchronization settings . 129
5.3.7 Brake settings . 131
5.3.8 Position control . 133
5.3.9 Settings of external control devices . 134
5.3.10 General purpose input-output settings . 138
5.3.11 Motor type settings . 140
5.3.12 Settings of PID control loops . 142
5.3.13 About controller . 143
5.3.14 Settings of kinematics (BLDC motor) . 144

5.3.14.1 Motor parameters - electric motor settings . 145
5.3.14.2 Motion setup - settings related to the movement kinematics 146
5.3.14.3 Feedback settings . 146

5.4 mDrive Direct Control application settings . 146
5.4.1 General motor settings . 146
5.4.2 Cyclical motion settings . 148
5.4.3 Log settings . 150
5.4.4 Charts general settings . 151
5.4.5 Charts customization . 152
5.4.6 User units settings . 153

5.4.6.1 User units . 154
5.4.6.2 Coordinate correction table for more accurate positioning 155

5.4.7 About the application . 155
5.5 Correct shutdown . 157
5.6 mDrive Direct Control installation . 157

5.6.1 Installation on Windows . 157
5.6.2 Installation on Linux . 161
5.6.3 Installation on MacOS . 165

6 Programming 172
6.1 Programming guide . 172

6.1.1 Working with controller in Visual Studio . 172
6.1.2 A short description of the work with supported by programming languages 174

6.1.2.1 Visual C++ . 174
6.1.2.2 .NET (C#) . 174
6.1.2.3 Python . 174

6.2 Communication protocol specification . 175
6.2.1 Protocol description . 179
6.2.2 Command execution . 179
6.2.3 Controller-side error processing . 180

6.2.3.1 Wrong command or data . 180
6.2.3.2 CRC calculation . 180
6.2.3.3 Transmission errors . 181
6.2.3.4 Timeout resynchronization . 182
6.2.3.5 Zero byte resynchronization . 182

6.2.4 Library-side error processing . 182

v

6.2.4.1 Library return codes . 183
6.2.4.2 Zero byte synchronization procedure . 183

6.2.5 Controller error response types . 184
6.2.5.1 ERRC . 184
6.2.5.2 ERRD . 184
6.2.5.3 ERRV . 184

6.2.6 All controller commands . 184
6.2.6.1 Command GACC . 184
6.2.6.2 Command GBRK . 186
6.2.6.3 Command GCAL . 186
6.2.6.4 Command GCTL . 187
6.2.6.5 Command GCTP . 188
6.2.6.6 Command GEAS . 189
6.2.6.7 Command GEDS . 189
6.2.6.8 Command GEIO . 190
6.2.6.9 Command GEMF . 191
6.2.6.10 Command GENG . 192
6.2.6.11 Command GENI . 194
6.2.6.12 Command GENS . 194
6.2.6.13 Command GENT . 195
6.2.6.14 Command GEST . 196
6.2.6.15 Command GFBS . 196
6.2.6.16 Command GGRI . 197
6.2.6.17 Command GGRS . 197
6.2.6.18 Command GHOM . 198
6.2.6.19 Command GHSI . 199
6.2.6.20 Command GHSS . 200
6.2.6.21 Command GJOY . 200
6.2.6.22 Command GMOV . 201
6.2.6.23 Command GMTI . 202
6.2.6.24 Command GMTS . 203
6.2.6.25 Command GNET . 204
6.2.6.26 Command GNME . 205
6.2.6.27 Command GNMF . 205
6.2.6.28 Command GNVM . 206
6.2.6.29 Command GPID . 206
6.2.6.30 Command GPWD . 207
6.2.6.31 Command GPWR . 207
6.2.6.32 Command GSEC . 208
6.2.6.33 Command GSNI . 208
6.2.6.34 Command GSNO . 209
6.2.6.35 Command GSTI . 210
6.2.6.36 Command GSTS . 211
6.2.6.37 Command GURT . 211
6.2.6.38 Command SACC . 212
6.2.6.39 Command SBRK . 213
6.2.6.40 Command SCAL . 214
6.2.6.41 Command SCTL . 214
6.2.6.42 Command SCTP . 215
6.2.6.43 Command SEAS . 216
6.2.6.44 Command SEDS . 217
6.2.6.45 Command SEIO . 218
6.2.6.46 Command SEMF . 219
6.2.6.47 Command SENG . 219

vi

6.2.6.48 Command SENI . 221
6.2.6.49 Command SENS . 222
6.2.6.50 Command SENT . 222
6.2.6.51 Command SEST . 223
6.2.6.52 Command SFBS . 223
6.2.6.53 Command SGRI . 224
6.2.6.54 Command SGRS . 225
6.2.6.55 Command SHOM . 225
6.2.6.56 Command SHSI . 227
6.2.6.57 Command SHSS . 227
6.2.6.58 Command SJOY . 228
6.2.6.59 Command SMOV . 228
6.2.6.60 Command SMTI . 229
6.2.6.61 Command SMTS . 229
6.2.6.62 Command SNET . 231
6.2.6.63 Command SNME . 232
6.2.6.64 Command SNMF . 232
6.2.6.65 Command SNVM . 232
6.2.6.66 Command SPID . 233
6.2.6.67 Command SPWD . 233
6.2.6.68 Command SPWR . 234
6.2.6.69 Command SSEC . 234
6.2.6.70 Command SSNI . 235
6.2.6.71 Command SSNO . 236
6.2.6.72 Command SSTI . 237
6.2.6.73 Command SSTS . 238
6.2.6.74 Command SURT . 238
6.2.6.75 Command ASIA . 239
6.2.6.76 Command CLFR . 239
6.2.6.77 Command CONN . 240
6.2.6.78 Command DBGR . 240
6.2.6.79 Command DBGW . 241
6.2.6.80 Command DISC . 241
6.2.6.81 Command EERD . 241
6.2.6.82 Command EESV . 242
6.2.6.83 Command GBLV . 242
6.2.6.84 Command GETC . 242
6.2.6.85 Command GETI . 243
6.2.6.86 Command GETM . 244
6.2.6.87 Command GETS . 244
6.2.6.88 Command GFWV . 248
6.2.6.89 Command GOFW . 249
6.2.6.90 Command GPOS . 249
6.2.6.91 Command GSER . 250
6.2.6.92 Command GUID . 250
6.2.6.93 Command HASF . 250
6.2.6.94 Command HOME . 251
6.2.6.95 Command IRND . 251
6.2.6.96 Command LEFT . 252
6.2.6.97 Command LOFT . 252
6.2.6.98 Command MOVE . 252
6.2.6.99 Command MOVR . 253
6.2.6.100 Command PWOF . 253
6.2.6.101 Command RDAN . 253

vii

6.2.6.102 Command READ . 255
6.2.6.103 Command RERS . 255
6.2.6.104 Command REST . 255
6.2.6.105 Command RIGT . 256
6.2.6.106 Command SARS . 256
6.2.6.107 Command SAVE . 256
6.2.6.108 Command SPOS . 257
6.2.6.109 Command SSER . 257
6.2.6.110 Command SSTP . 258
6.2.6.111 Command STMS . 258
6.2.6.112 Command STOP . 258
6.2.6.113 Command UPDF . 259
6.2.6.114 Command WDAT . 259
6.2.6.115 Command WKEY . 259
6.2.6.116 Command ZERO . 260

6.3 mDrive library timeouts . 260
6.4 mDrive Direct Control scripts . 260

6.4.1 Brief description of the language . 262
6.4.1.1 Data Types . 262
6.4.1.2 Statements . 262
6.4.1.3 Variable statements . 263
6.4.1.4 Reserved words . 263
6.4.1.5 Functions . 263

6.4.2 Syntax highlighting . 263
6.4.3 Additional mDrive Direct Control functions . 264

6.4.3.1 mDrive Direct Control log . 264
6.4.3.2 Script execution delay . 265
6.4.3.3 New axis object creation . 265
6.4.3.4 New file object creation . 265
6.4.3.5 Creation of calibration structure . 266
6.4.3.6 Get next serial . 266
6.4.3.7 Wait for stop . 266
6.4.3.8 mDrive library functions . 267

6.4.4 Examples . 267
6.4.4.1 Bit mask example script . 267
6.4.4.2 A script which scans and writes data to the file . 268
6.4.4.3 Multi axis cyclic movement script . 269
6.4.4.4 Single axis cyclic movement script . 270
6.4.4.5 Homing test script . 271
6.4.4.6 List axis serials script . 272
6.4.4.7 Move and wait script . 273
6.4.4.8 Random shift script . 273
6.4.4.9 Set zero scrip . 274
6.4.4.10 Border crossing test . 276
6.4.4.11 Closed loop tuning test . 278
6.4.4.12 Discrete motion script . 281
6.4.4.13 Exponential position change in user units script 282
6.4.4.14 For calb step script . 284
6.4.4.15 Step script . 285
6.4.4.16 Homing test with extio . 286
6.4.4.17 Motion by sin function . 288
6.4.4.18 Move EXTIO calb script . 289
6.4.4.19 Probabilistic tests . 291
6.4.4.20 Several shifts with calibration script . 291

viii

6.4.4.21 Steps loss test . 292
6.4.4.22 Sync test script . 294

7 Control via Ethernet 298
7.1 Network configuration . 298

7.1.1 mDrive controller detection on the network with a DHCP server 298
7.1.2 Automatic device detection . 298
7.1.3 mDrive controller detection on the network with a static IP address 299

7.2 mDrive web interface . 303
7.3 Getting started with mDrive Direct Control . 304

8 FAQ 306
8.1 No device found / Can’t open device . 306

8.1.1 Connect via USB . 306
8.1.2 Connect via ETHERNET . 308

8.1.2.1 If the mDrive is not found on the local network . 309
8.2 Unable to rotate the motor by the controller . 310

8.2.1 Controller has Alarm state . 310
8.2.2 Motor vibrates without rotation . 310
8.2.3 Mechanical jamming . 315
8.2.4 The motor does not react on move commands . 315

8.3 When using the mDrive library and Linux with kernel version less than 3.16, there are possible hang-
ing of the operating system . 315

8.4 USB connection loss . 315
8.5 probe_flag - what is it? . 316
8.6 Virtual controller as in mDrive Direct Control Software . 316
8.7 Python CRC algorithm . 317
8.8 Where can I find the programming manual for the mDrive controller? 318
8.9 How do I implement an emergency stop button? . 318
8.10 How to get a mDrive Direct Control window that has disappeared off the screen? 319
8.11 How to check if the connection to mDrive is established and still active during my session using the

mDrive library? . 320
8.12 Raspberry Pi control . 320

8.12.1 Working with mDrive Direct Control software on ARM processor 320
8.12.2 Working with mDrive library on an ARM processor . 320

ix

CHAPTER

ONE

ABOUT

1.1 General information

Fig. 1.1: Three-axis mDrive controller

We offer an inexpensive and ultra-compact servo-drive with USB and Ethernet interfaces for stepper and BLDC motors
with external power supply.

Forget about cumbersome and expensive servo-drives! All you need is a stepper or BLDC motor, a controller, an
USB/Ethernet cable and any stabilized external power supply. Forget about active coolers as well. With modern
controller design even simple and inexpensive stages can be utilized to achieve high speed and precision. The controller
is great at driving stepper and BLDC motors with a rated winding current of up to 3 A. Controller works with stepper
motors with no feedback as well as with ones equipped with encoders in feedback loop, including linear encoders on
the stages. USB/Ethernet connector provides easy communication and work with computer. Several controllers can be

1

mDrive User Manual, Release 3.1.2

connected to one computer via USB/Ethernet ports. The controller is fully compatible with the majority of operating
systems, e.g., Windows, Mac OS X, Linux, etc.

All the necessary software including all configuration files (profiles in .cfg format) are supplied with the controller.
It allows you to start working with it the controller right out of the box, according to “plug-and-play” principle.
Therefore, all you need is to open your controller in the mDrive direct control software, download the .cfg file for your
stage and click “Apply”. Your controller is now fully configured! Enter the move commands and the controller will
execute them.

1.2 Benefits

1.2.1 Main benefits
• Compact and powerful! The controller’s dimensions are 155 x 112 x 59 mm including all connectors. The

device is adapted to all stepper motors with rated winding current of up to 3 A.

• It does remember all! Do not worry about saving the current position on the computer: the controller does it
itself using its own nonvolatile memory that works even after a sudden power cut.

• It works with peripherals! It supports a quadrature encoder, magnetic brake, a joystick, limit switches, a zero
position sensor.

• Built-in zero calibration! Using the limit switches, the revolution sensor, the external signal or their combina-
tion, the zero calibration is performed by a single command!

1.2.2 All benefits
• Really powerful! The controller is great at driving stepper and BLDC motors with a rated winding current of up

to 3 A.

• Choose your interface! Both USB and Ethernet are built-in and ready to use.

• Really fast! Up to 15,000 steps per second for any microstep mode!

• Precise! The microstep modes: full step, 1/2, 1/256 of the step on all the speeds.

• It does remember all! Do not worry about saving the current position on the computer: the controller does it
itself using its own nonvolatile memory that works even after a sudden power cut.

• It works with peripherals! It supports a quadrature encoder, magnetic brake, a joystick, limit switches, a zero
position sensor. Additional stabilized output for peripherals (5 V, 500 mA) is available.

• Built-in zero calibration! Using the limit switches, the revolution sensor, the external signal or their combina-
tion, the zero calibration is performed by a single command!

• Stand-alone! Would you like to work in the stand-alone mode? Just go ahead! An external joystick, a keypad or
their combination is supported.

• Energy conserving! Programmable current reduction in the motor windings in the hold mode with 1% accuracy.

• Silent! Smooth movement at lower speeds and no extra noise at higher speeds.

1.2. Benefits 2

mDrive User Manual, Release 3.1.2

• Protected! An ESD protection on all pins of external connectors and additional short circuit protection for the
motor windings.

• Attentive! It controls the temperature of the processor and the power driver as well as both currents and voltages
for the power supply and USB.

• Modern! The firmware in the nonvolatile memory of the controller can be updated via USB interface.

• Controlling and controllable! The built-in synch input and output allow to start the rotation to desired position
by the incoming external signal and/or to transmit the outgoing signal after the desired position is reached. The
analog common input and the digital common input/output are built in as well.

• Comprehensible! The status LED displays the power supply and the controller’s state. For convenience of use
both signals doubled at the external LEDs as well as the state of the limit switches.

• It works with all computers! All the supplied software is compatible with Windows (7, 8, 10, 11), Linux, Mac
OS Sierra and newer for Intel, including 64-bit versions and Apple Silicon (via Rosetta 2).

• Examples for programming languages! Controllers are supplied with cross-platform library and examples which
allow rapid development using C++, C#, Python.

• Full-featured interface! The mDrive Direct Control user interface is supplied with the controller. It allows to
easily control all the functions and features of the device without any programming.

• Unique scripting language! A scripting language is integrated into mDrive Direct Control software. It allows
easy setting the sequence of actions, including cycles and branches, without compilation or learning any pro-
gramming language.

• Stepper motor close-loop control algorithm are ready! Motion is smoother and faster than ever with innovation
encoder based close-loop on mDrive motor controllers. No hidden catch, no stall or hitch, just free move!

1.3 General technical specifications

• Number of axes: 1 - 3

• Power supply system: unified for all 3 axes

• Supported engine types: bipolar stepper, BLDC

• Rated current in the winding of the stepper motor/BLDC: up to 3 A

• Step modes: full-step, 1/2, 1/256

• Maximum speed: up to 15 000 full steps per second

• Supply voltage range: 12 - 48 V

• Number of digital inputs/outputs: 3 inputs, 1 output (EXTIO)

• Synchronization system: internal (common to all axes, for the possibility of creating a connected motion along
the trajectory) and external (individual for each axis)

• Possibility to set the voltage: from 5 to 24 V for EXTIO, SYNC, EMBRAKE outputs (depends on the voltage
applied to EXT REF SUPPLY)

• Connecting to a PC: via USB or Ethernet

• Controller dimensions: 155 x 112 x 59 mm

• Controller weights: One-axis controller: 0.533 kg Two-axis controller: 0.603 kg Three-axis controller: 0.669
kg

• Compatibility with OS types: Windows (7, 8, 10, 11), Linux, MacOS Sierra and newer for Intel and Apple
Silicon (using Rosetta 2)

1.3. General technical specifications 3

mDrive User Manual, Release 3.1.2

• A graphical interface: mDrive Direct Control

• The possibility of software management: the controller comes with a cross-platform library and examples that
allow you to quickly start programming using C/C++, C#, Python, Delphi, Java, LabWindows, Matlab, VB.NET

Note: The controller’s working voltage range is 12 V to 48 V DC. The voltage limits are 12 V and 50 V DC. If the
voltage exceeds 50 V, the controller is guaranteed to fail. If the voltage falls below 12 V, the controller turns off.

1.4 Specifications

1.4.1 Motor requirements
• Motor type: bipolar stepper motor, BLDC motor.

• Rated winding current: minimum 100 mA.

• Rated winding voltage: minimum 2 V.

1.4.2 Electric specifications of the controller
• Power supply modes: external power supply.

• Current in each winding of the stepper motor, BLDC motor: up to 3 A.

• Maximum encoder pulse frequency: 200 kHz for single-ended and 5MHz for differential encoder.

• Stabilized 5 V DC output (the power supply for encoder and other peripherals): 500 mA maximum output
current, 5% or better output voltage stability.

• ESD-protection on all pins of the output connectors (e.g., DVI-I, USB type B or power jack).

• Winding-to-ground short circuit protection.

• Winding-to-winding short circuit protection.

• Motor hot-swapping protection.

• Wrong power polarity protection (no more than 1 sec).

• Voltage overload protection (no more than 1 sec).

• External power supply current limitation.

• Motor rotation speed limitation.

• Programmable full winding current with 10mA precision.

• Programmable winding current decrease with 1% precision for the hold mode.

• For earth conditions, the temperature range of the controller is from +5 °C to +75 °C.

Note: The controller was not tested in a vacuum. Most likely, the controller will work in a vacuum, but it is important
how the heat will be removed from the body.

1.4.3 Rotation control features
• Microstep modes: full-step, 1/2, 1/256.

• Noiseless at low speeds.

1.4. Specifications 4

mDrive User Manual, Release 3.1.2

• Minimum speed is 1/256 of the full step per second.

• Maximum speed is up to 15 000 full steps per second for all microstep modes.

• Minimum shift is 1/256 of the step.

• Maximum shift is 2,147,483,647 full steps for all microstep modes.

• Smooth start/stop mode.

• 40-bit position counter (32 bits for full step and 8 bits for microstep).

• Motion modes: left/right move, move to point, shift on delta, continuous speed, acceleration and deceleration
ramps, backlash compensation mode, automatic home position calibration mode.

1.4.4 Additional firmware features
• Automatic HOME calibration at firmware level.

• The nonvolatile memory used for saving/downloading the controller settings.

• Software update via USB interface.

• Automatic position saving according to step counter and encoder with power-off protection.

1.4.5 Additional features available via DVI-I connector
• Processing the signals from one or two limit switches; software configurable.

• The “step loss” detection and position recovery using either a revolution sensor or a quadrature encoder (if the
stage supports this feature).

• The position detection using a quadrature encoder. The x4 mode.

• The stepper motor control using master quadrature encoder mode, providing the maximum speed without any
step loss.

• Synchronization input: once the pulse is received via this pin, the controller starts rotating the motor to prede-
termined position or by predetermined shift value. The triggering mode, the polarity and duration of the pulse
are adjustable by user. Specifications: TTL 3.3 V.

• Synchronization output: emit pulse to this pin if rotation is started or finished, or predetermined user-defined
shift value is reached. The triggering mode, the polarity and duration of the pulse are adjustable by user.
Specifications: TTL 3.3 V.

• Outputs for connecting control buttons (“right”, “left”). Once the button is pressed, the rotation in corresponding
direction starts and the speed increases gradually according to acceleration and other settings. Specifications:
TTL 3.3 V.

• Joystick pin allowing operation with various joysticks with the voltage range no more than 0–3 V.

• Magnetic brake control pin providing control to magnetic brake mounted on the motor shaft. Specifications:
TTL 3.3 V, 5 mA.

• Common analog input pin allowing operation with signals within 0–3 V range. Reading frequency is 1 kHz.
The configuration is programmable.

• Common digital input/output pin. 1 kHz update frequency, software configurable. Specifications: TTL 3.3 V, 5
mA.

• Digital “Power” and “Status” pins duplicate the status LED and designed for direct connection of LEDs. Speci-
fications: TTL 3.3 V, 2 mA.

• External driver control interface allowing to control any type of external driver using three signals: enable,
direction, clock.

1.4. Specifications 5

mDrive User Manual, Release 3.1.2

• Multiaxis systems development. Up to 3 axes can be placed in the mDrive housing. To combine more than 3
axes, use a standard external USB hub or an Eternet connection (there are 2 Ethernet ports on the drive case).
On the PC multi axis system is presented as a set of virtual serial ports or connected Ethernet devices according
to the number of connected axes.

1.4.6 Programming the controller
• Controllers are supplied with cross-platform library and examples which allow rapid development using C/C++,

C#, Python, Delphi, Java, LabWindows, Matlab, VB.NET.

• The mDrive Direct Control user interface is supplied with the controller, which integrates a scripting language,
an EcmaScript language dialect. With it, you can easily set sequences of actions, including loops and conditional
transitions, without compiling and mastering any programming language. But if you don’t want to program, then
mDrive Direct Control makes it easy to control all the functions of the device without any programming.

Attention: The programming guide is available on request by e-mail support@mdrive.tech.

1.4. Specifications 6

mailto:support@mdrive.tech

CHAPTER

TWO

SAFETY INSTRUCTIONS

Power supply and grounding requirements. Connection to controller

General requirements for a systems in box (single-axis, multi-axis and three-axis) are listed below.

During operation, current consumption will vary depending upon how the controller is being used. Our controllers
are calibrated to the rated current of the motors they are to be used with. Due to Pulse Width Modulation (PWM)
our controllers consume less current than the rated current of motors. However, to avoid problems during worst case
scenarios, we recommend selecting a power supply with a max current not less than the rated current of motors that
will be connected to the controller. In case of multi-axis controllers you will need to sum the current of all controllers
connected to the power supply. Our controllers require a voltage of 12 - 48 V. Recommended power supply
parameters: 24 V; 2.5 A

Important: Either the power supply unit should be plugged to grounded 220 V AC socket (a three-
wire connection scheme). Make sure that the minus electrode of your power supply unit is grounded.
Non-compliance with this rule may lead to the decrease in controller stability and noise resistance.

Typical connection diagram for a controller:

Fig. 2.1: Controller grounded via minus electrode of power cable connection diagram

Warning: Power supply unit should be able to supply sufficient current to rotate the motor. As an absolute
minimum it should be able to supply

𝐼𝑝𝑜𝑤𝑒𝑟.𝑚𝑖𝑛 =
2 * 𝐼𝑚𝑜𝑡𝑜𝑟 * 𝑈𝑚𝑜𝑡𝑜𝑟

𝑈𝑝𝑜𝑤𝑒𝑟

7

mDrive User Manual, Release 3.1.2

where 𝐼𝑝𝑜𝑤𝑒𝑟.𝑚𝑖𝑛 is the minimum working current of power supply unit, 𝐼𝑚𝑜𝑡𝑜𝑟 is the operating current in the
winding, 𝑈𝑝𝑜𝑤𝑒𝑟 is power supply unit stabilized voltage, and 𝑈𝑚𝑜𝑡𝑜𝑟 is rated operating voltage of the motor. It is
recommended to use a power supply unit with operating current equal to 𝐼𝑝𝑜𝑤𝑒𝑟 ≥ 2 * 𝐼𝑝𝑜𝑤𝑒𝑟.𝑚𝑖𝑛. The 𝑈𝑝𝑜𝑤𝑒𝑟

voltage should be greater than 𝑈𝑚𝑜𝑡𝑜𝑟. The higher the voltage, the faster rotation speed could be reached.

One can use power consumption of power supply unit to calculate minimum requirements instead. An absolute
minimum of power is:

𝑊𝑝𝑜𝑤𝑒𝑟.𝑚𝑖𝑛 = 𝐼𝑝𝑜𝑤𝑒𝑟.𝑚𝑖𝑛 * 𝑈𝑝𝑜𝑤𝑒𝑟 = 2 * 𝐼𝑚𝑜𝑡𝑜𝑟 * 𝑈𝑚𝑜𝑡𝑜𝑟

For example, for motor with operating winding current of 1 A and operating voltage of 5 V (with 5 W rated power
consumption), the operating voltage of power supply unit may be chosen at 20 V with the output power of at least
10 W (the maximum operating current of power supply unit is at least 0.5 A).

Important: It is strictly forbidden to touch the controller board without any antistatic equipment. We recommend
you to use antistatic wrist strap. You should not exceed maximum allowed voltage of 48 V. If voltage goes over
allowed value at more than 2 volts, it can immediately and irreversibly damage the controller.

8

CHAPTER

THREE

QUICK START GUIDE

This guide describes the operation of controller for the multi-axis and one-axis systems, basic parameters configuration
and getting started with the mDrive Direct Control software for Windows 10.

Attention: For a quick start with the controller, see the Overview and getting started. The programming guide
can be requested by mail to support@mdrive.tech.

• Overview and getting started - a brief description of the beginning of work with the controller mDrive. It is also
considered quick mDrive Direct Control setup and lists all necessary equipment.

• Example of a motor connection - connection of stepper motor Nanotec ST5918L3008-B with encoder CUI INC
AMT112S-V to mDrive controller. It is described how to make your own cable, guided by the specification on
the engine and explanation of the specification is given.

• Manual profile setting - setting of working profile for mDrive Direct Control. Overview of the main features.

• Calculation of the nominal current - setting of amplitude of nominal current for stepper motors.

3.1 Overview and getting started

• Introduction

• Requirements

• Software installation and startup procedures

• Getting started with mDrive Direct Control software

• Functional test

• Control from user applications

Attention: This manual is universal for all mDrive controllers

3.1.1 Introduction
This manual describes the controller installation procedures and getting started with mDrive Direct Control software
for Windows 10. The installation on other OSs is described in mDrive Direct Control installation chapter. The detailed
controller specifications are described in Specifications chapter. For developing your own applications, please read the
Programming guide chapter and download the programming software package from the software chapter.

9

mailto:support@mdrive.tech
https://files.mdrive.tech/ru/product/mDrive/

mDrive User Manual, Release 3.1.2

3.1.2 Requirements
For successful installation you will need:

• PC with USB/Ethernet port

• Software All necessary software to work with the controller can be downloaded from software page.

• USB Type-A - USB Type-B cable / Ethernet cable

• mDrive (one-axis) controller

3.1. Overview and getting started 10

https://files.mdrive.tech/ru/product/mDrive/

mDrive User Manual, Release 3.1.2

Fig. 3.1: One-Axis mDrive Controller

• Stage or motor

Fig. 3.2: The stepper motor

The stepper motor used in the operations is shown at the figure. The detailed motor requirements are described in
Specifications chapter. If you use your own cables for connecting the motor/stage to the controller, please refer to
stage connection scheme and the controller’s output connector scheme. For motor/stage with limited movement
range, two limit switches must be used: SW1 and SW2. These pins are used to determine the movement limits.

• Power supply

3.1. Overview and getting started 11

mDrive User Manual, Release 3.1.2

• Please use the 12-48 V DC stabilized power supply. Too high voltage may damage the controller. For more
information please read the Safety instructions chapter. The power supply unit must provide the current enough
for sustainable rotation of the motor.

• Grounding of the controller occurs through the “ground” of the power supply. For more information please read
the Safety instructions chapter.

• Make sure that the controller lays on the insulating surface.

3.1.3 Software installation and startup procedures
You can download the software here. The installer file name is “mdrive_direct_control-<version_name>.exe”. It
automatically detects whether it is running on 32-bit or 64-bit version of Windows and installs the appropriate version
of mDrive Direct Control. Launch the installation program, the installation window will appear. (Software versions
may differ from each other).

Fig. 3.3: mDrive Direct Control main installation window

3.1. Overview and getting started 12

https://files.mdrive.tech/ru/product/mDrive/

mDrive User Manual, Release 3.1.2

Press “Next>” button and follow the instructions on screen. All the necessary software including all drivers, packages
and programs will be installed automatically. After installation is finished, the mDrive Direct Control software starts
by default and the following window will open:

Fig. 3.4: mDrive Ditect Control “Virtual controllers found” dialogue window

Don’t press any buttons. Connect the stage to the controller. Connect the stabilized power supply unit to the controller.
Ground the controller or power supply unit. Connect the controller to your PC using the USB Type-A to USB Type-B
cable or Ethernet cable.

The LED indicator at the controller board will start flashing. The New Hardware Wizard starts working after the first
connection of the controller to PC. Please wait until Windows detects a new device and installs all necessary drivers
for it.

If the automatic driver installation has failed, please select “No, not this time” in the window being opened and
press “Next>” button. Select “Install from a list or specific location (Advanced)” in the next window and press
“Next>” again. Browse the software disk supplied with controller and find the *.inf file there or in the C:\Program
Files\mdrive_direct_control\driver folder and wait until installation is completed.

Go back to mDrive Direct Control “Virtual controllers found” dialog window and press “Rescan” button. If this
window was closed, please reopen mDrive Direct Control software. The dialog window will open again.

3.1. Overview and getting started 13

mDrive User Manual, Release 3.1.2

3.1.4 Getting started with mDrive Direct Control software
mDrive Direct Control is a user-friendly graphic interface designed for control, diagnostics and adjustment of motors.
It can also be used for easy installation and save/restore of parameters for any type of motors. This chapter describes
the startup procedures with mDrive Direct Control software. For complete information please refer to mDrive Direct
Control application User’s guide chapter.

Fig. 3.5: mDrive Direct Control main window

Open “Settings. . . ”, then press “Load setting from file. . . ” and select the configuration file for your stage from the
opened C:\Program Files\mdrive_direct_control\profiles folder. The values applicable for your stage will automat-
ically fill all the fields of “Settings. . . ” menu. If the necessary file isn’t found, please leave your request at our technical
support website.

3.1. Overview and getting started 14

https://doc.xisupport.com/en/8smc5-usb/index.html?highlight=support
https://doc.xisupport.com/en/8smc5-usb/index.html?highlight=support

mDrive User Manual, Release 3.1.2

Fig. 3.6: mDrive Direct Control, the Settings menu window

3.1. Overview and getting started 15

mDrive User Manual, Release 3.1.2

Warning: For the controller to work with motors it is required to properly set up:

• working current,

• displacement limits and limit switches,

• critical parameters,

• limiters,

• power supply mode.

If you decide to configure your controller by yourself, please check these parameters carefully!

Congratulations, your controller is ready for operation!

3.1.5 Functional test
Check if the controller is configured properly by pressing left or right button in the central row of mDrive Direct
Control main window control buttons. The stage has to start moving. Use the central “soft stop” button to stop the
rotation.

Please pay attention to the power supply parameters of the controller in the Power section. There you can see the
power voltage, working current and temperature of the controller.

If mDrive Direct Control main window is shaded red when the movement was supposed to start, that means that
protection was activated and controller entered the ALARM state. This may be caused by incorrect settings, wrong
connection of the stage or controller malfunction. For detailed information please read the Critical parameters chapter.

3.1.6 Control from user applications
For convenient control of the mDrive controller, you can use the mDrive Direct Control software. However, if you need
to control the mDrive from your own application, you may do so by using mDrive library. Programming guide has
several examples in C, C#, Python programming languages. If all you need is to automate a small number of control
steps, then instead of a standalone program you may find it easier to use mDrive Direct Control scripting language.

3.2 Example of a motor connection

• General case

3.2. Example of a motor connection 16

mDrive User Manual, Release 3.1.2

• Example

– Preparation

– Connecting the motor and encoder to the controller

3.2.1 General case
To connect a motor to the controller please refer to stage connector, and use the scheme of stage connection:

3.2. Example of a motor connection 17

mDrive User Manual, Release 3.1.2

Fig. 3.7: General diagram of stage and encoder connection using DVI-I connector

Note: If A and B encoder channels work in open drain mode, some extra pull-up of encoder outputs to 5V power
voltage using the resistors may be required at high rotation speeds in order to provide the maximum signal transmission

3.2. Example of a motor connection 18

mDrive User Manual, Release 3.1.2

speed (see Operation with encoders).

3.2.2 Example
Consider the connection of the two-phase stepper motor Nanotec ST5918L3008-B with encoder CUI INC AMT112S-
V to controller mDrive.

3.2.2.1 Preparation

To get started, we need:

• Motor;

• Encoder;

• Pinout of DVI-I connector for mDrive;

• Motor datasheet ;

• Encoder datasheet ;

• Soldering equipment: soldering-iron, wires, flux, solder, nippers, heat shrink tubes of different sizes;

• Screws M2.5x6 for fixing the encoder;

• Hot melt glue;

• DVI-I cover + connector (male) and wires for cable manufacturing;

3.2. Example of a motor connection 19

https://ximc.ru/attachments/download/16836/ST5918L3008.pdf
https://ximc.ru/attachments/download/16848/amt11-v.pdf

mDrive User Manual, Release 3.1.2

3.2.2.2 Connecting the motor and encoder to the controller

• Before you begin, assemble the encoder in accordance with the appropriate instructions.

3.2. Example of a motor connection 20

mDrive User Manual, Release 3.1.2

Fig. 3.8: The motor without encoder. Note 2 holes M2.5 to which is usually attached an encoder

Fig. 3.9: Motor with attached encoder

• In the engine specification, find the wiring diagram (for Nanotec ST5918L3008-B it is at the bottom right in the
specification):

3.2. Example of a motor connection 21

mDrive User Manual, Release 3.1.2

Fig. 3.10: Motor contacts

Fig. 3.11: Connection type

– There exist serial and parallel winding connection and each type allows to obtain various characteristics
for the motor. We will connect the windings in series (red frame on the picture). To do this, wires having
two colors BLK/WHT and GRN/WHT, as well as RED/WHT and BLU/WHT must be connected to each

3.2. Example of a motor connection 22

mDrive User Manual, Release 3.1.2

other in pairs. Next, you need to put in accordance A, not A, B, not B pins of controller to contacts of motor
windings ST5918L3008-B: black, green, red, blue. One winding is a connection of A and not A or B and
not B. After the connection between a two-color wire, you will get that one winding of the motor is black
- green connection, other is red - blue. Therefore, matching contacts will be the follows: black - A, green -
not A, red - B, blue - not B. It can be seen in the picture above “Connection type”.

– To connect encoder, open its datasheet and find 5 contacts on encoder connector: A+ (channel A), B+
(channel B, shifted relative to A by 90 degrees), Z+ (rev counter), 5V, GND. They should be taken from
the encoder as 5 separate wires and put together with the wires from the motor as they then go to a
connector. CUI INC AMT112S-V encoder has 18 pin input, therefore it is needed to make a cable with
the same connector on the end to output necessary signals:

Encoder contacts A+, B+, Z+, 5V and GND corresponds to 19, 21, 23, 17, 18 pins of DVI-I male connector
respectively.

For convenience, use the next tables (the number in parentheses indicates pin on the corresponding connector):

Encoder pin DVI-I pin
A+ (10) Encoder A (19)
B+ (8) Encoder B (21)
Z+ (12) Revolution sensor input (23)
5V (6) Output 5V, 100 mA (17)
GND (4) Logical ground (18)

Motor pin DVI-I pin
A (BLK) phase A (C4)
not A (GRN) phase not A (C3)
B (RED) phase B (C2)
not B (BLU) phase not B (C1)

• Solder the above contacts to DVI-I male connector:

3.2. Example of a motor connection 23

mDrive User Manual, Release 3.1.2

Fig. 3.12: The wires from the motor and encoder in a heat shrink tube.

Note the presence of small heat-shrinkable tubes for wires going to the motor windings (BLK, GRN, RED and
BLU), as well as two-colored wires joined together (BLK/WHT and GRN/WHT, RED/WHT and BLU/WHT).
The thin wires are an encoder contacts (5 pcs).

3.2. Example of a motor connection 24

mDrive User Manual, Release 3.1.2

Fig. 3.13: Ready cable from the motor with the DVI-I connector on its end

Recommendation: use heat shrink tubes of a small diameter (2-3 mm) while soldering contacts to DVI-I
connector, and large diameter to skip through them all the wires coming from the motor and encoder. Put them
before soldering.

• Apply hot melt glue adhesive to the finished contact part and tighten the cable with the DVI-I connector tightly
inside the cover.

3.2. Example of a motor connection 25

mDrive User Manual, Release 3.1.2

• Now you can connect it to mDrive.

Description and profile settings are given in the next chapter Manual profile setting.

3.3 Manual profile setting

• Introduction

• Getting started

• Nominal current setting

• Basic parameters setting

• Hardware limit switches setting. Homing.

• Encoder parameters setting

• Setting the kinematic characteristics of the controller

• Working with user units

3.3.1 Introduction
All necessary parameters are set after motor connection (see Example of a motor connection where the Nanotec
ST5918L3008-B motor connection is described). There we will consider the setting of the profile for Nanotec
ST5918L3008-B stepper motor.

3.3. Manual profile setting 26

mDrive User Manual, Release 3.1.2

3.3.2 Getting started
• Install and run mDrive Direct Control (see Overview and getting started).

• Load the profile with default settings. To do this, open Settings -> Load setting from file. . . and select
xilabdefault.cfg file from mDrive Direct Control folder.

3.3.3 Nominal current setting
Initially, it is needed to set a correct current in motor windings:

• From the specification find the phase current 2.1 A - this is the maximum current for the motor in case of serial
winding connection:

• Being in the Settings window, open Stepper motor tab. There are such parameters as rotational speed, accel-
eration, driving mode, etc. (see Settings of kinematics (stepper motor) for additional information). In Motor
parameters-> Nominal current field you should specify the value of the phase current not exceeding 2.1 A:

3.3. Manual profile setting 27

https://en.nanotec.com/fileadmin/files/Datenblaetter/Schrittmotoren/ST5918/L/ST5918L3008-B.pdf

mDrive User Manual, Release 3.1.2

3.3.4 Basic parameters setting
• In the Working speed field we will specify a rotation speed. The recommended speed is not more than 1000

s/sec at the first start. In the same window you should type Max Nominal Speed (5000 s/sec is reasonable value
for majority of motors and motorized stages) and mark Limit speed with max speed. This setting is necessary to
limit the motor speed since some mechanical systems can be designed for low speed, and fast rotation can lead
to severe wear of motor/stage mechanics.

• In the motor specification we find the number of steps per rotation. For our motor this value is equal to 200 steps.
Specify it in the Steps per turn field. Usually, the value of one pitch in degrees is listed in motor description, on
the basis of which you can calculate the number of steps per revolution, knowing that one revolution consists of
360 degrees.

• Make sure that movement to the right from the main window of mDrive Direct Control corresponds to the

3.3. Manual profile setting 28

mDrive User Manual, Release 3.1.2

movement to the right of the stage. If not, then check the box Reverse field Stepper motor -> Motor parameters.

3.3.5 Hardware limit switches setting. Homing.

Note: This section describes the using of motorized stages with hardware limit switches. If your system is not
provided with hardware limit switches, it is recommended to disable stop by limit switches in settings. To do this,
unmark Stop at right border and Stop at left border in Borders tab.

There are stages with limited (translators) and an unlimited range of motion (rotators). The limitation of movement
range can be done by position or with limit switches using. When you work with translators if its limit switches are
configured incorrectly there exists a risk to break down mechanics, since moving part can try to go out of motion
range. Rotators do not have such problem. Moreover, it should be kept in mind that rotator may have only one limit
switch.

• To work with limit switches you must specify which one will be left and right. Sometimes it is unknown in
advance and we only know that both switches are connected and fire if the corresponding limit of the motion
range is reached. The stage jam is possible if the limit switches are configured improperly. Therefore, the
controller supports just a simple detection of incorrectly configured limit switches, shutting down the movement
on both of them. Please make sure that:

– The stage is far from limit switches;

– Switches polarity is configured correctly (limit switches indicators are off in the main window of mDrive
Direct Control). In the case of incorrect settings, change their polarity (Borders -> Pushed position),
indicators should go out.

– Shutdown mode is activated on both of limit switches (Stop at right border and Stop at left border are
marked in Borders tab).

• Mark the flag detecting improper connection of limit switches Border misset detection in Borders tab.

3.3. Manual profile setting 29

mDrive User Manual, Release 3.1.2

Fig. 3.14: Tab with limit switches settings

• Controller can switch to Alarm state after false limit switch response, if Enter Alarm state when edge misset is
detected is enabled in Maximum ratings tab. It is recommended to enable it. Start the movement in any direction
from the mDrive Direct Control main window up to Alarm state or stopping by the limit switch. When an Alarm
occurs you need to reverse limit switches by changing Borders->Border with reversed values in the Stepper
motor tab.

Warning: The protection against mistaken limit switches connection doesn’t guarantee the complete solution of
the problem, it only makes the initial configuration procedure easier. Don’t start the movement with mixed up limit
switches if any of them is active, even if the protection is on.

3.3. Manual profile setting 30

mDrive User Manual, Release 3.1.2

There are still two ways to determine which of the limit switch is right and which is the left:

• You need to know how each of the limit switches is connected to the stage. When loading a profile with the
default settings, switch connected to pin 2 of the DVI-I connector is considered as left, while switch connected
to pin 3 - as right. Their location relative to the stage is configured in the fields Limit switch 1 and Limit switch 2
(see screenshot above). Start the system at the low speed (<100 steps/s) when it is far away from limit switches.
If the direction of movement to the switch in a real setting differs from the expected, change Borders->Border
values with reversed in the Stepper motor tab.

• If it is possible to get limit switches activate them and note the correspondence between indicators in mDrive
Direct Control and each particular switch. Then start the system at the low speed (<100 steps/s) when it is far
away from limit switches and make sure that the system moves to the right switch. Compare this to what you
see in the main window of mDrive Direct Control. If the direction of movement to the switch in a real setting
and in the main window differs, change Borders->Border values with reversed in the Stepper motor tab.

For detailed information refer to motion range and limit switches.

• Controller has a useful function called automatic Home position calibration to set the initial position of the
motorized stage.

3.3. Manual profile setting 31

mDrive User Manual, Release 3.1.2

We will consider the most simple configurations with a single phase only. Start from the setting of the 1st phase
speed which is approximately 5-10 times lower than Working speed. It is necessary for higher precision of automatic
calibration procedure. In the filed Stop after specify the limit switch to make the stage reached one of the limit switches
during the calibration (direction is selected in the 1st move direction). In the field Standoff specify number in steps,
for which stage must be driven away from the limit switch. Click Ok or Apply.

Note: Standoff value is signed. Positive direction is right. That is, if the auto-calibration procedure is set up on the
right limit switch, then in order to move stage away to the left you should type negative value in Standoff field.

• Start the automatic calibration by clicking Go home in the main window of mDrive Direct Control. The result
of it is a movement of the stage to the specified limit switch with a relatively low speed and the shift away from
him to the value specified in the field Standoff.

3.3. Manual profile setting 32

mDrive User Manual, Release 3.1.2

• After completion of the calibration process, press ZERO in mDrive Direct Control to set the origin of coordinate
system for your stage.

• Repeat the calibration process again. The stage must return to the ZERO position. Please pay attention that
there can be slight deviations from ZERO connected with calibration procedure error.

3.3.6 Encoder parameters setting

Note: This section describes the using of motor with encoder. If you motor without an encoder, the parameters
described below can be left unchanged.

• Any encoder has Pulse Per Turn - PPT parameter (sometimes it is called PPR - Pulse Per Rotation). For
correct operation of the encoder with controller you should enter the number of encoder counts per revolution,
which is equal to 4xPPT in the Encoder counts per turn field in mDrive Direct Control. For example, if your
encoder has 1024 pulses per turn, specify 4096 in the Counts per turn:

3.3. Manual profile setting 33

mDrive User Manual, Release 3.1.2

• Start the motor rotation from the main window of mDrive Direct Control. If everything is configured correctly,
the green indicator ENCD will light in the bottom of window. If ENCD has yellow color, you should mark
Encoder reverse in the Stepper motor tab. Red color of EDCN points to the problem with encoder position
recalculation.

• It is possible to activate the position control by encoder. To do this, in the tab Position control mark Position
control and specify allowable error in terms of encoder counts in the Threshold field. Then, when a mismatch
between position and encoder counts occurs, indicator SLIP will light in the bottom of mDrive Direct Control
main window. Beyond this, if Alarm on errors is marked, the controller will go to Alarm state. Correct er-
rors allows you to start closed loop control, when the difference between real position and encoder position is
compensated.

3.3. Manual profile setting 34

mDrive User Manual, Release 3.1.2

3.3.7 Setting the kinematic characteristics of the controller
• In the Stepper motor tab you may specify a necessary acceleration (Acceleration) and deceleration (Decelera-

tion) for your stepper motor. The process of optimal values selection is the next:

– Starting from default values make small shifts (start and fast stop) with gradual Acceleration increase until
the movement become unstable and disrupted sometimes. Take acceleration equal to about half of this
value.

– The deceleration can be configured about 1.5 - 2 times higher than acceleration.

• If in your mechanical system moving to the desired position on the left and on the right is not the same, and there
is play, it is possible to eliminate this ambiguity. To do this mark Backlash compensation in Stepper motor and
type number greater than play value. The sign of this setting determines the direction of moving to the position.
Positive sign means move from the left while negative - from the right. In Backlash compensation speed field set
the speed of compensation movement. This value should be low (50 s/sec is enough) in order to avoid “drifting”
during backlash compensation.

• After the basic configuration of the stage/motor, you can increase working speed. It can be done experimentally
like the process of acceleration setting, i.e. you should take its value about 2 times lower than value at which
there is unstable movement. To test the stability of the rotation it is recommended to use the function Cyclic in
mDrive Direct Control main window. Make sure that you set it previously.

• In the Microstep mode field we recommend to enter the value 1/256.

3.3.8 Working with user units
Often it is uncomfortable to work with the steps and microsteps and more convenient units are preferable. For this
reason, the controller can recalculate the coordinates in the usual units, for example in millimeters or degrees. It can
be done in the tab User units, where you should specify the size of the step and the corresponding measurement unit.
For more information, refer to relevant documentation paragraph.

3.3. Manual profile setting 35

mDrive User Manual, Release 3.1.2

Configuration of the operating profile complete.

3.4 Calculation of the nominal current

In order to stepper engine gave maximum torque, but it does not overheat, it is important to specify such technical
characteristic as the rated current.

The greater a current in the motor winding, the greater the torque at the axis. It is important to remember that with an
increase a current flowing through the winding, thermal power released by the motor increases. So the engine could
operate for a long time allocated to thermal power (Joule heating) must be less power dissipation. Power dissipation
can be calculated on the basis of documentation on the engine.

3.4.1 Calculation based on the parameters of unipolar full step mode
Power dissipation is equal to

𝑃 = 𝑛 ·𝑅𝑢𝐼
2
𝑢,

where 𝑅𝑢 - the resistance of the winding in unipolar mode, 𝐼𝑢 - current through the winding in unipolar mode, 𝑛 - the
number of simultaneous windings.

Consider, for example, ST2818M1006. The table in the documentation shows that in full step mode simultaneously
running two phase (n = 2) in the unipolar mode, i.e. 𝑃 = 2𝑅𝑢𝐼

2
𝑢. The motor controllers support only bipolar control

mode. To switch from a unipolar to a bipolar mode, connect each phase windings in series, the resistance will increase,
𝑅𝑏 = 2𝑅𝑢, where 𝑅𝑏 - the resistance of the series-connected windings in the bipolar control mode.

The motor controllers control algorithm is capable of operating in a microstepping mode and maintains the current so
that the first winding current varies in function 𝐼𝑎 sin(𝜑), in the other winding current varies in function 𝐼𝑎 cos(𝜑),
where 𝐼𝑎 - current amplitude. Thermal power released two windings at any time

𝑃 = 𝑅𝑏𝐼
2
𝑎 sin

2(𝜑) +𝑅𝑏𝐼
2
𝑎 cos

2(𝜑) = 𝑅𝑏𝐼
2
𝑎

It follows from the foregoing that the 𝐼𝑎 = 𝐼𝑢.

3.4.2 Calculation based on the parameters of bipolar full step mode

Power dissipation is equal to 𝑃 = 𝑛 · 𝑅𝑏𝐼
2
𝑏 , where 𝑅𝑏 - the resistance of the winding in bipolar mode, 𝐼𝑢 - current

through the winding in bipolar mode, n - the number of simultaneous windings.

Consider, for example, ST2018S0604. The table in the documentation shows that in full step mode simultaneously
running two phase (n = 2) in the bipolar mode, i.e. 𝑃 = 2𝑅𝑏𝐼

2
𝑏 .

Thermal power dissipated in the motor windings that managed by motor controller, still is

𝑃 = 𝑅𝑏𝐼
2
𝑎 sin

2(𝜑) +𝑅𝑏𝐼
2
𝑎 cos

2(𝜑) = 𝑅𝑏𝐼
2
𝑎

We obtain the equation equating power 2𝑅𝑏𝐼
2
𝑏 = 𝑅𝑏𝐼

2
𝑎 . We find that 𝐼𝑎 =

√
2 · 𝐼𝑏.

3.4.3 The relationship with an rms current
Alternating current in each motor winding can be characterized by its rms value in the period

𝐼𝑟𝑚𝑠 =

⎯⎸⎸⎸⎷ 1

2𝜋

2𝜋∫︁
0

(𝐼𝑎 sin(𝜑))2 d𝜑 =
𝐼𝑎√
2

3.4. Calculation of the nominal current 36

https://en.wikipedia.org/wiki/Joule_heating
https://en.nanotec.com/fileadmin/files/Datenblaetter/Schrittmotoren/ST2818/M/ST2818M1006-A.pdf
https://en.nanotec.com/fileadmin/files/Datenblaetter/Schrittmotoren/ST2018/ST2018S0604-A.pdf

mDrive User Manual, Release 3.1.2

Thermal power of one winding is associated with an rms current through it 𝑃1 = 𝑅𝑏𝐼
2
𝑟𝑚𝑠. Both windings are identical

𝑃1 = 𝑃2. The total thermal power of the engine that is run by control by motor controller controller 𝑃 = 𝑃1 + 𝑃2 =
2𝑅𝑏𝐼

2
𝑟𝑚𝑠.

It follows from the foregoing that 𝐼𝑟𝑚𝑠 =
𝐼𝑢√
2

, also 𝐼𝑟𝑚𝑠 = 𝐼𝑏.

3.4.4 Amplitude and rated current for BLDC
The rated motor current is calculated from the maximum allowable heat dissipation. The rated current written in the
documentation is calculated from the power limit allocated when the power supply is connected to the two windings.

Let’s write the formula for power with this connection:

𝑃𝑐ℎ𝑜𝑝 = 2𝑅𝑝ℎ𝑎𝑠𝑒𝐼
2
𝑟𝑎𝑡𝑒

Formula for the power generated by the windings for sinusoidal control:

𝑃𝑠𝑖𝑛 = 3𝑅𝑝ℎ𝑎𝑠𝑒𝐼
2
𝑟𝑚𝑠

The rated motor current is calculated from the maximum allowable heat dissipation. Equate right parts of formulas:

𝐼𝑟𝑚𝑠 =

√
2√
3
𝐼𝑟𝑎𝑡𝑒

3.4. Calculation of the nominal current 37

mDrive User Manual, Release 3.1.2

So,

𝐼𝑎𝑚𝑝 =
2𝐼𝑟𝑎𝑡𝑒√

3

This means that if the documentation on your engine says that the rated current is, for example, 0.88A, then a amplitude
current value can be written to the controller:

𝐼𝑎𝑚𝑝 =
2 * 0.88√

3
= 1𝐴

3.4.5 Setting the nominal current
Motor controller are capable of taking the nominal current value as a current amplitude or as rms. The choice of
which way to interpret the input value of the nominal current is determined by the absence or presence corresponding
flag ENGINE_CURRENT_AS_RMS in the EngineFlags engine settings structure. When setting the nominal current
in mDrive Direct Control should properly specify how the current is interpreted. Motor controllers in this case will
provide the maximum torque without overheating the engine.

The same flag also controls the semantics of the BLDC current.

As for the stepper, there is a special checkbox in the mDrive Direct Control for BLDC, which determines how to
interpret the value entered in the Nominal current field. If checkbox “Amplitude current” is checked, the entered
current value will be amplitude: maximum the amplitude of the sine will always be less than this value. If checkbox
“Amplitude current” is cleared, the verified value will be recalculated by the formula for and the current amplitude
will be limited already by this recalculated value

3.4. Calculation of the nominal current 38

CHAPTER

FOUR

TECHNICAL SPECIFICATION

4.1 Appearance and connectors

mDrive controllers are available in 1-2-3 axial versions. The controller board can be purchased separately, but an
mDrive enclosure is required for its operability.

• Controller board

• One axis system

• Multi-axes system

4.1.1 Controller board

4.1.1.1 Dimensions and arrangement

Structurally the controlled is designed as 139.4 x 53 x 22.4 mm board with a power part, the logic controller and
control systems mounted on the board. A radiator at the power part is available.

Fig. 4.1: Top view on the controller. The view from power part and radiator side.

Fig. 4.2: Front view on the controller. The view from stage cable side.

Important: If you are mounting the radiator to the power part by yourself, please make sure that there is no contact
between heat-conducting surfaces and conductive elements of the unit. Such contact may damage the power circuit!

4.1.1.2 Controller board connectors

4.1.1.2.1 Stage connector

A female DVI-I connector for stage is mounted on the controller board.

39

mDrive User Manual, Release 3.1.2

Fig. 4.3: Dimensions and numbers of the pins in DVI-I connector (front view)

Pins functionality:

1. External 5-24 V reference supply voltage for output GPIO, EMBRAKE and SYNC signals (Power, “+”.)

2. 1st limit switch

3. 2nd limit switch

4. Digital output for magnetic brake control, 5-24 V, depending on external power supply (EXT REF SUPPLY)

5. Not connected

6. Not connected

7. Not connected

8. Not connected

9. 5-24 V input GPIO 1 signal

10. 5-24 V input GPIO 2 signal, alternative function moving button

11. 5-24 V input GPIO 3 signal, alternative function moving button

12. Output GPIO signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

13. Output synchronization signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

14. Input synchronization signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

15. An analog 0-3.3 V input used for external joystick connection (JOY)

16. An analog 0-3.3 V input used for general purpose (POT)

17. 5V output, 500 mA - for stabilized output for limit switchers, encoder power supply, etc.

18. Logic GND for limit switchers, encoder, etc.

19. Encoder channel A

20. Inverted Encoder channel A

21. Encoder channel B

22. Inverted Encoder channel B

23. Revolution sensor input

24. Inverted revolution sensor input

C1. Phase A of SM or phase A on BLDC motor C2. Phase B of SM or phase B on BLDC motor C3. Not phase A of
SM or phase C on BLDC motor C4. Not phase B of SM C5. Power GND (Power, “-“)

4.1. Appearance and connectors 40

mDrive User Manual, Release 3.1.2

Warning: Plugging in/out the motor to the controller is not recommended while motor windings are under
voltage.

4.1.2 One axis system
Single-axis controller model is a controller board in a metal case. Case dimensions are 155 x 112 x 59 mm.

Fig. 4.4: Appearance of the one-axis controller mDrive

Front panel of the controller contains stage connector and state LED.

Rear panel contains power supply connector, USB type-B data connector and 2 Ethernet ports.

4.1. Appearance and connectors 41

mDrive User Manual, Release 3.1.2

4.1.2.1 Connectors

4.1.2.1.1 Stage connector

A female DVI-I connector for stage is mounted on the controller board.

Fig. 4.5: Dimensions and numbers of the pins in DVI-I connector (front view)

Pins functionality:

1. External 5-24 V reference supply voltage for output GPIO, EMBRAKE and SYNC signals (Power, “+”.)

2. 1st limit switch

3. 2nd limit switch

4. Digital output for magnetic brake control, 5-24 V, depending on external power supply (EXT REF SUPPLY)

5. Not connected

6. Not connected

7. Not connected

8. Not connected

9. 5-24 V input GPIO 1 signal

10. 5-24 V input GPIO 2 signal, alternative function moving button

11. 5-24 V input GPIO 3 signal, alternative function moving button

12. Output GPIO signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

13. Output synchronization signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

14. Input synchronization signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

15. An analog 0-3.3 V input used for external joystick connection (JOY)

16. An analog 0-3.3 V input used for general purpose (POT)

17. 5V output, 500 mA - for stabilized output for limit switchers, encoder power supply, etc.

18. Logic GND for limit switchers, encoder, etc.

19. Encoder channel A

20. Inverted Encoder channel A

21. Encoder channel B

22. Inverted Encoder channel B

23. Revolution sensor input

24. Inverted revolution sensor input

4.1. Appearance and connectors 42

mDrive User Manual, Release 3.1.2

C1. Phase A of SM or phase A on BLDC motor C2. Phase B of SM or phase B on BLDC motor C3. Not phase A of
SM or phase C on BLDC motor C4. Not phase B of SM C5. Power GND (Power, “-“)

Warning: Plugging in/out the motor to the controller is not recommended while motor windings are under
voltage.

4.1.2.1.2 Power supply connector

A male 4-pin Mini-Fit connector with 4.2mm interval (type MF-4MRA) is mounted at the controller board for plugging
in to power supply. Its comparable benefits are as following: high 8 A current per pin, a fixation available, a possible
coupling with both cable-mounted (type MF-4F, PN 39-01-2040 according to Molex catalogue) and board-mounted
counterparts, including vertical (PN 15-24-7041 according to Molex catalogue). All Mini-Fit connectors are available
in Molex catalogue at www.molex.com .

Output pin table

4.1. Appearance and connectors 43

mDrive User Manual, Release 3.1.2

Pin Name
1 “-” power electrode.
2 12–48 V “+” power electrode.
3 “-” power electrode.
4 12–48 V “+” power electrode.

Important: Never supply the power to the controller and do not plug it to power connector if you are not confident that
your power supply parameters conform to the requirements. Never attempt to plug the power supply to the controller
if you are not sure power supply unit and controller connectors are compatible! The acceptable connection parameters
are described in Safety instructions.

Important: Hot-swapping or unreliable connection of the power supply connector Mini-Fit may damage the PC
and/or the controller. For more details please refer to Safety instructions.

4.1.2.1.3 Data connector

Controllers connect via USB type-B or Ethernet connector.

Fig. 4.6: USB type-A - USB type-B cable

Fig. 4.7: USB type-B connector

4.1. Appearance and connectors 44

mDrive User Manual, Release 3.1.2

Output pin table

Pin # Name Wire colour Description
1 VCC Red +5V DC
2 D- White Data -
3 D+ Green Data +
4 GND Black Ground

Warning: Use verified USB cables only! Damaged or low-quality USB cable may cause improper controller
operation, including motor rotation errors and errors of device recognition by PC operating system. Short cables
with thick wires and screening are ideal for sustainable connection.

4.1.2.1.4 Joystick connector

Controller mDrive contain a DVI-I female connector.

Fig. 4.8: Pinout for joystick connection, front view

Output DVI-I pin table

Pin Name
15 JOY, an analog 0-3.3 V joystick input.
17 5 V output, 500 mA - for stabilized output for limit switchers, encoder power supply, etc.
18 Logic GND for limit switchers, encoder, etc.

Detailed joystick connection diagrams can be found in the Joystick control section.

Note: If you want to connect a 5 V joystick, use a resistor voltage divider. Resistance can be calculated in an online
calculator, for example.

Note: Unused pins of the internal connector do not require any additional connection or pullup/pulldown. Simply do
not use them.

Important: Analog JOY, POT inputs are designed to work with less than 3.3 V voltage. Do not apply higher voltages,
including 3.3 V, to these inputs, as it can break all analog controller inputs and lead to the controller or motor failure.

4.1. Appearance and connectors 45

https://ohmslawcalculator.com/voltage-divider-calculator
https://ohmslawcalculator.com/voltage-divider-calculator

mDrive User Manual, Release 3.1.2

4.1.3 Multi-axes system

4.1.3.1 Enclosure view

Multi-axis controller model consists of two or three controller boards in a metal case. Case dimensions are 155 x 112
x 59 mm.

Fig. 4.9: Appearance of the two-axis and three-axis controllers mDrive

Front panel of the controllers contains stage connector and state LED.

Rear panel contains power supply connector, USB type-B data connector and 2 Ethernet ports.

4.1.3.2 Connectors

4.1.3.2.1 Stage connector

A female DVI-I connector for stage is mounted on the controller board.

Fig. 4.10: Dimensions and numbers of the pins in DVI-I connector (front view)

Pins functionality:

1. External 5-24 V reference supply voltage for output GPIO, EMBRAKE and SYNC signals (Power, “+”.)

2. 1st limit switch

4.1. Appearance and connectors 46

mDrive User Manual, Release 3.1.2

3. 2nd limit switch

4. Digital output for magnetic brake control, 5-24 V, depending on external power supply (EXT REF SUPPLY)

5. Not connected

6. Not connected

7. Not connected

8. Not connected

9. 5-24 V input GPIO 1 signal

10. 5-24 V input GPIO 2 signal, alternative function moving button

11. 5-24 V input GPIO 3 signal, alternative function moving button

12. Output GPIO signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

13. Output synchronization signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

14. Input synchronization signal, 5-24 V, depending on external power supply (EXT REF SUPPLY)

15. An analog 0-3.3 V input used for external joystick connection (JOY)

16. An analog 0-3.3 V input used for general purpose (POT)

17. 5V output, 500 mA - for stabilized output for limit switchers, encoder power supply, etc.

18. Logic GND for limit switchers, encoder, etc.

19. Encoder channel A

20. Inverted Encoder channel A

21. Encoder channel B

22. Inverted Encoder channel B

23. Revolution sensor input

24. Inverted revolution sensor input

C1. Phase A of SM or phase A on BLDC motor C2. Phase B of SM or phase B on BLDC motor C3. Not phase A of
SM or phase C on BLDC motor C4. Not phase B of SM C5. Power GND (Power, “-“)

Warning: Plugging in/out the motor to the controller is not recommended while motor windings are under
voltage.

4.1.3.2.2 Power supply connector

A male 4-pin Mini-Fit connector with 4.2mm interval (type MF-4MRA) is mounted at the controller board for plugging
in to power supply. Its comparable benefits are as following: high 8 A current per pin, a fixation available, a possible
coupling with both cable-mounted (type MF-4F, PN 39-01-2040 according to Molex catalogue) and board-mounted
counterparts, including vertical (PN 15-24-7041 according to Molex catalogue). All Mini-Fit connectors are available
in Molex catalogue at www.molex.com .

4.1. Appearance and connectors 47

mDrive User Manual, Release 3.1.2

Output pin table

Pin Name
1 “-” power electrode.
2 12–48 V “+” power electrode.
3 “-” power electrode.
4 12–48 V “+” power electrode.

Important: Never supply the power to the controller and do not plug it to power connector if you are not confident that
your power supply parameters conform to the requirements. Never attempt to plug the power supply to the controller
if you are not sure power supply unit and controller connectors are compatible! The acceptable connection parameters
are described in Safety instructions.

Important: Hot-swapping or unreliable connection of the power supply connector Mini-Fit may damage the PC
and/or the controller. For more details please refer to Safety instructions.

4.1. Appearance and connectors 48

mDrive User Manual, Release 3.1.2

4.1.3.2.3 Data connector

Controllers connect via USB type-B or Ethernet connector.

Fig. 4.11: USB type-A - USB type-B cable

Fig. 4.12: USB type-B connector

Output pin table

Pin # Name Wire colour Description
1 VCC Red +5V DC
2 D- White Data -
3 D+ Green Data +
4 GND Black Ground

Warning: Use verified USB cables only! Damaged or low-quality USB cable may cause improper controller
operation, including motor rotation errors and errors of device recognition by PC operating system. Short cables
with thick wires and screening are ideal for sustainable connection.

4.1.3.2.4 Joystick connector

Controller mDrive contain a DVI-I female connector.

4.1. Appearance and connectors 49

mDrive User Manual, Release 3.1.2

Fig. 4.13: Pinout for joystick connection, front view

Output DVI-I pin table

Pin Name
15 JOY, an analog 0-3.3 V joystick input.
17 5 V output, 500 mA - for stabilized output for limit switchers, encoder power supply, etc.
18 Logic GND for limit switchers, encoder, etc.

Detailed joystick connection diagrams can be found in the Joystick control section.

Note: If you want to connect a 5 V joystick, use a resistor voltage divider. Resistance can be calculated in an online
calculator, for example.

Note: Unused pins of the internal connector do not require any additional connection or pullup/pulldown. Simply do
not use them.

Important: Analog JOY, POT inputs are designed to work with less than 3.3 V voltage. Do not apply higher voltages,
including 3.3 V, to these inputs, as it can break all analog controller inputs and lead to the controller or motor failure.

4.2 Kinematics and rotation modes

4.2.1 Predefined speed rotation mode
Predefined speed rotation mode is the main operating mode of the controller for all the motor types. It allows to
maintain the predefined rotation speed at a distance from the destination point and is usually used simultaneously with
Rotation for predefined point or Predefined displacement modes. This mode may also get called by left and right
motion commands.

Motor steps or encoder counts (if the encoder is available) per time unit are used as speed measurement units. Encoders
work with all the types of motors.

Turning on the Acceleration mode temporarily deactivates the predefined speed rotation mode.

After the controller receives the command to start the motion, it rotates the motor with user-defined speed. The speed
adjustment is available at the appropriate section of the “Settings. . . ” menu of mDrive Direct Control software or
using the set_move_settings() function (refer to Programming guide section). For stepper motors the speed value may
be defined in full steps and microsteps per second, for BLDC motors the speed is defined in revolutions per minute
(RPM).

The speed for special motion modes, e.g., for backlash compensation or automatic zero position calibration, is differ-
ent from the general rotation speed and is set separately.

4.2. Kinematics and rotation modes 50

https://ohmslawcalculator.com/voltage-divider-calculator
https://ohmslawcalculator.com/voltage-divider-calculator

mDrive User Manual, Release 3.1.2

The controller allows limitation of the maximum speed if appropriate parameter is defined by user. In that case any
rotation that would have happened with the speed over the maximum is performed with the maximum speed. A
separate adjustment is available, providing use of the maximum speed for all the ordinary motion modes, except for
special ones, e.g., backlash compensation or automatic zero position calibration. The maximum speed adjustment as
well as the adjustment for modes using this speed are available in the appropriate section of the “Settings. . . ” menu
of mDrive Direct Control software.

The actual speed is displayed in mDrive Direct Control main window, in the Speed field, or on main operating
parameters charts.

Note: If the stability of the speed maintenance seems to be insufficient while the encoder is used, please refer to
recommendations for accurate rotation.

Note: Maximum allowed speed is 100000 steps/s or 100000 rpm depending on engine type.

4.2.2 Rotation for predefined point
The rotation to predefined point mode is the main operating mode for all the types of motors and is usually used
simultaneously with predefined speed rotation mode. It provides moving the stage to the defined position with absolute
value for destination point coordinates which is different from predefined displacement mode.

Fig. 4.14: The rotation to predefined point mode

An additional reciprocal motion close to predefined point may be performed at Backlash compensation mode.

While using the encoder, few barely noticeable “vibrations” are possible before the motor stops in predefined point.

Besides, the movement to a given point, for stepper motors, can be carried out in the feedback mode encoder mediated.
In this case, the movement is carried out in several iterations with position control at the end of each iteration of the
encoder, until it hits a given coordinate with a certain accuracy.

After the starting command is received by the controller, it either switches on the acceleration mode (if the appropriate
option is on) or immediately starts rotating the shaft of the motor with user-defined speed. After the predefined point
is reached, the rotation stops; deceleration may be activated if the appropriate option is on. The destination point is
set in mDrive Direct Control main window. The destination point may be defined either in full steps and microsteps
for stepper motors or in encoder counts for all types of motors.

The actual position is displayed in mDrive Direct Control main window, in the Control section, or on main operating
parameters charts.

Note: If the positioning accuracy seems to be insufficient while the encoder is used, please refer to recommendations
for accurate rotation.

4.2. Kinematics and rotation modes 51

mDrive User Manual, Release 3.1.2

4.2.3 Predefined displacement mode
The predefined displacement mode provides displacement of the stage for predefined value relative to zero position,
if this is a first command since the controller started or relative to position reached by the motor after the previous
commands are completed, i.e., the destination point coordinate is a relative value.

Fig. 4.15: Displacement mode

This mode is useful when the absolute position is unknown or doesn’t matter.

Note: The predefined displacement mode is activated either by corresponding command or by incoming synchro-
nization pulse. For more information please refer to TTL synchronization chapter.

4.2.4 Acceleration mode
The acceleration function is active by default. The acceleration is used for smooth start or finish of the rotation
without shocks that are inevitable when the predefined speed is reached instantly. Moreover, inertia of rotor and the
other components of stage usually doesn’t allow instant gathering of high speed which results in the loss of steps as
well as failure in rotation during the operation without feedback. While operating the motor with feedback via encoder,
the speed will increase as quickly as motor limiters allow. High acceleration makes the rotation unstable as well as
it makes more noise and vibration. That’s why the acceleration mode is recommended. The acceleration function
provides reaching of both maximum speed and sustainable motion even for motors with intermediate torque value.

The acceleration/deceleration mode works in the following way: during the speeding-up, while the required speed
value is higher than the actual one, a gradual acceleration is performed at the Acceleration value which is measured
in steps per squared second. After the required speed is reached, the controller switches to predefined speed rotation
mode. Approaching the destination position, the controller begins to decrease the speed as the speeding-down would
equal to Deceleration value and the motor would stop exactly at the destination point. Thus, this mode provides a
trapezoidal speed profile. If the displacement distance is small, then the acceleration may change directly to decel-
eration; this will result to triangular speed profile. Turning the acceleration mode on and off, as well as setting of
acceleration and deceleration value, is possible using mDrive Direct Control software (see the Settings of kinematics
(stepper motor) section) or by set_move_settings() command described in Programming guide.

The Acceleration value is adjusted independently from the Deceleration value – and there is a reason for it. Usually,
due to friction effect resisting acceleration but contributing to deceleration, the maximum acceleration value is less than
deceleration one. Therefore, for the fastest response of the stage either preset profiles should be used, or the accelera-
tion/deceleration values should be established experimentally, according to what your stage may provide. For stepper
motors working without feedback these are the values that do not lead to the steps loss. For motors with feedback
the trapezoidal speed profile should be controlled using mDrive Direct Control charts. The acceleration/deceleration
values should be taken 1.5–2 times less than those resulting in speed profile distortion or step loss.

Note: Turning the acceleration/deceleration mode off is sometimes useful for multiaxis systems control where, during
the motion along multi-dimensional paths, a continuous speed projection on each of the axes is required.

4.2. Kinematics and rotation modes 52

mDrive User Manual, Release 3.1.2

Note: The acceleration value is not displayed in mDrive Direct Control main window.

Note: Acceleration/deceleration values should be set as to allow the motor to reach target speed or decelerate from
top speed to zero in less than 5 minutes. If the acceleration/deceleration on kinematic settings page is set outside of
this range, then the controller will return an “incorrect value” error and accelerarion/deceleration will be changed in
controller to applicable value.

4.2.5 Backlash compensation
Backlash occurs in any mechanical device, e.g., in reduction gear or in worm-gear. Backlash results in differences in
physical stage position when approaching the same point from different directions, whereas the motor shaft is exactly
in the required position.

Backlash compensation mode is used in order to eliminate such ambiquity. Its activation allows user to determine the
direction from where the stage would approach the destination point. Further on, the stage will approach the stop point
from the defined direction only, eliminating the mechanical backlash. If the natural approaching direction doesn’t
match the selected one, then the controller drives the motor for some user-defined distance beyond the destination
point and after that turns the motor around and completes the approach from the required direction.

While a loaded mechanical system is moving, its dynamic characteristics in the backlash zone do differ from the
regular motion mode. Therefore, the rotation in the backlash zone should be performed with user-defined speed.

The following parameters of backlash-compensating system are available for adjustment by user:

• Backlash compensation on/off flag.

• Rotation speed while performing the compensating motion.

• Backlash compensation distance. The plus or minus sign for that parameter is used to determine the approach
direction. The plus means the approach from the left side whereas the minus means the approach from the right
side.

The controller indicates if the backlash compensation is active using MOVE_STATE_ANTIPLAY flag in the state
structure which is also displayed in mDrive Direct Control main window.

A forced backlash compensation by using the LOFT command may be performed if there is no confidence that the
actual position is backlash-free. While carrying out this command, a displacement for backlash compensation distance
is performed with subsequent return. Calling this command while driving will lead to a smooth stop of the engine.
This command makes sense only when the backlash system is active.

Note: The backlash compensation mode presumes no axis position correction, providing the user with just the choice
of the direction from where the stage should approach the destination point, sticking to this selected direction.

The backlash compensation adjustment using mDrive Direct Control software is described in Settings of kinematics
(stepper motor) section. Switching on and backlash compensation parameters detection commands are described in
Programming guide.

The minimum backlash is reached if the approach to the setpoint is performed with the same movement parameters,
so the optimal values of the backlash parameters are: the play speed must be equal to the nominal speed, the backlash
compensation distance must be such that the device could reach the nominal speed.

Backlash compensation distance can be calculated from formula:

𝑆 =
𝑈2

2

[︁ 1

𝐴𝑐
+

1

𝐷𝑐

]︁
+ 0.2𝑈

4.2. Kinematics and rotation modes 53

mDrive User Manual, Release 3.1.2

S - backlash compensation, Ac, Dc - acceleration and deceleration, U - nominal speed, 0.2 - even motion time.

4.2.6 Rotation reversal
It is a common agreement that the coordinate increase corresponds to movement to the right, whereas its decrease
corresponds to movement to the left. The rotation is to be reversed either if this rule is not satisfied due to physical
stage location, or if the stage is supplied with an anchor which is pointed so that it doesn’t match coordinate increase.

The rotation reversal may be switched on in the Motor parameters block of mDrive Direct Control menu. Switching
this feature on will change the current coordinate sign; thus, “left” and “right” terms will get interchanged. For
example, the first movement during the Home position calibration will perform physically to the opposite direction,
the Left and Right commands in mDrive Direct Control main window will interchange, etc.

Warning: Reverse is a setting that affects the whole controller operation if changed. The previously used mDrive
Direct Control scripts or your own controlling programs will work differently.

Particularly, the limit switches are adjusted independently from the reverse. Thus, after switching this mode on or
off, one must re-adjust them.

4.2.7 Recommendations for accurate rotation
The controller can automatically adjust itself for the required mode, in order to maintain either the speed or the
coordinate. However, both the speed and the adjustment property depend on the controller settings. The stepper motor
working in steps and microsteps positioning mode can instantly reach the required operating conditions. If the stepper
motor is physically unable to provide the required speed or acceleration, the rotation will most likely stop completely.
The movement will not fail if a feedback sensor such as quadrature encoder is used as a reference; however, the
controller probably won’t be able to maintain the required rotation parameters.

The indirect connection of controlling scheme affection with BLDC motor stage displacement results to slowing down
of reaching the required coordinate or speed. The following recommendations will help you to accelerate this process
and to make it more stable:

• The profile corresponding to the stage being used is normally uploaded to controller and is used by it. Please
upload the profile from the the Configuration Files section if you aren’t confident that it is proper.

• The motor doesn’t enter the limitation mode for one of the operating parameters (refer to Motor limiters and
Power control chapters). Such limitations are displayed by the horizontal bar above the Current indicator in
either Power, Voltage or Speed blocks in the Motor section of mDrive Direct Control Main window in single-
axis control mode. For more information please refer to Motor limiters and Power control chapters.

• There are no mechanical impediments for rotation, the axis and stage are not jammed.

• The output power of power supply unit being used is sufficient (see the Safety instructions).

4.2.8 PID-algorithm for BLDC engine control

4.2.8.1 PID-algorithm description

BLDC engine is controlled by the PID regulator, with the coordinate as the controlled parameter. The controlled
coordinate changes according to motion settings and incoming commands to provide motion capability. We will call
controller coordinate the running position. Output current is the control signal of the regulator. The control action is
calculated according to the following formula:

𝑈(𝑡) = 𝐼 + 𝑃 +𝐷 = 𝐾𝑝 · 𝐸(𝑡) +𝐾𝑖

∫︁
𝐸(𝑡)𝑑𝑡+𝐾𝑑

𝑑𝐸(𝑡)

𝑑𝑡
, 𝑤ℎ𝑒𝑟𝑒 :

𝑈(𝑡) - is the control action

4.2. Kinematics and rotation modes 54

mDrive User Manual, Release 3.1.2

𝐸(𝑡) - is difference between the running coordinate and the current motor coordinate

𝐾𝑝,𝐾𝑖,𝐾𝑑 - are proportional, integral and differential coefficients of the regulator. Regulator coefficients are set on
PID settings page of the mDrive Direct Control program or programmatically by calling set_pid_settings() function
of the libximc library (see Programming guide).

4.2.8.2 Particular properties of the algorithm

4.2.8.2.1 PID regulator coefficients

User set values are normalized to keep optimal PID regulator coefficients in [0..65535] range.

Let’s consider the effects different components have for better understanding. We will assume the supply voltage
𝑈𝑠𝑢𝑝𝑝(𝑡) is constant and equal to the motor nominal voltage 𝑈𝑛𝑜𝑚. With this assumption PWM fill factor will be
equal to 1 in the following cases:

1. 𝐾𝑝 = 1,𝐾𝑖 = 0,𝐾𝑑 = 0 - if target position is ahead of real position by 256 motor shaft revolutions

2. 𝐾𝑝 = 0,𝐾𝑖 = 1,𝐾𝑑 = 0 - if integral in the formula above is equal to 52.5 revolutions / second

3. 𝐾𝑝 = 0,𝐾𝑖 = 0,𝐾𝑑 = 1 - if real motor speed is higher than the required speed by 96000 rpm.

4.2.8.2.2 Reaching target position

Target position is considered to be reached when motor shaft reaches the target position. Some oscillations around
target position are possible. Motor will need some time to stop and return to correct position if smooth deceleration is
not used and an immediate stop command is received or an emergency stop by limit switch has happened.

Warning: Long time oscillations around the target position while the motion is considered finished are possible
if the PID regulator is set up incorrectly.

4.2.8.3 PID regulator manual tuning

We provide a special mDrive Direct Control extension for the manual adjustment of the PID regulator coefficients.
The time dependence of the speed of the BLDC engine and the speed retention error is shown in a special window
(Settings -> PID control), see the screenshot below.

4.2. Kinematics and rotation modes 55

mDrive User Manual, Release 3.1.2

Fig. 4.16: The PID regulator tuning window.

The stable position retention is necessary for the correct engine operation.

4.2.8.3.1 Steps to adjust the coefficients:

1. First, you need to evaluate the PID coefficients. Given the structure of the managed system, they can be calcu-
lated from simplified formulas. For this, the parameters from the documentation for the appropriate motor and
stage are used.

• 𝐾𝑚 - electromechanical motor coefficient [H / A] (the torque generated by the current strength is 1 A).
Can be calculated as the ratio 𝐾𝑚 = 𝐹𝑛

𝐼𝑛
, where 𝐹𝑛 is the nominal (maximum) force generated by the

motor, 𝐼𝑛 is the rated (maximum) current strength.

• 𝑀 - weight of load (kg).

• 𝜎 = 𝑀
𝐾𝑚

.

• 𝐾𝑝 = 11500𝜎 · 1000, 𝐾𝑑 = 186𝜎 · 1000, 𝐾𝑑 = 12.2𝜎 · 1000.

2. Set the coefficients calculated by formulas, click Apply. Click the Zero button on the main mDrive Direct
Control window. Set 0 to the Move to field, send the command. The engine should stop. Try to move the
position manually, make sure that the response is correct - the engine tries to return to zero position (the encoder
reverse is set correctly).

3. Set a small speed in the motion settings, click Apply. Start moving in the main window. The differential
coefficient (Kdf) should be increased if there are vibrations and disruptions.

4. If the vibrations have audio frequencies (the stage emits a loud sound when driving), it may be necessary to
reduce the Kd coefficient or all the coefficients proportionally.

4.2. Kinematics and rotation modes 56

mDrive User Manual, Release 3.1.2

5. The integral coefficient (Kif) is responsible for getting into the target position, it is convenient to use the com-
mand Shift on for testing.

6. To fine-tune the coefficients use the Oscilloscope window where the speed retention error is displayed for used
motion parameters.

7. After the coefficients are adjusted, they need to be proportionally increased/decreased, this corresponds to an
increase/decrease in mass, response to the impact becomes more/less powerful, sudden stops will not lead to
disruption of movement.

4.2.9 Feedback EMF

4.2.9.1 Advantages

• Always supports sinusoidal current form, which ensures silent operation;

• At high speeds, it can dynamically adapt to external loads, current and voltage restrictions (automatically reduces
speed);

• At low speeds, it uses frequency control without rotor position control. When the position of the rotor begins to
give correct indicators, it switches to the field control mode with feedback on the rotor position. The switching
threshold is individual for each engine, it is determined by the quality of the rotor position assessment issued by
the observer;

• Does not use the position sensor (encoder);

• It can operate in three modes:

– MTPA - the most economical mode, characterized by a minimum current, but the voltage increases rapidly
with the speed of 𝐼𝑑 = 0;

– FW - the flux linkage step-down mode is active when the set speed cannot be reached within the current
voltage using MTPA 𝐼𝑑 < 0;

– Limit - saturation mode, when movement at the specified speed is not possible. Occurs when the voltage
and current are saturated. In this mode, the drive outputs the maximum torque determined by the current
speed and current limits and sets the PowerLimited flag.

Important: The algorithm should not be used with the “Position Control” flag enabled. For smooth running in
the EMF algorithm, a discrepancy between the actual position and the profile position is implemented. If “Position
Control” flag is enabled, false Alarms may be triggered.

4.2.9.2 Behavior of the engine when exposed to an external force

In frequency control mode: - The rotor position is not controlled, but the current is equal to the nominal value. Only
an external force greater than the holding moment can cause the steps to be lost

In field control mode: - If the force can be overcome, then the movement continues at the specified speed; - If the
force cannot be overcome, the PowerLimited flag is set, and the set speed value begins to decrease in accordance with
the Deceleration value, the position setpoint determined by the logic of the speed profile generator (integral of the
speed) is changed accordingly; - If the force is stopped, the misalignment between positions will be compensated by
the PID of the position controller; - If the force cannot be overcome by the drive (exceeds the holding force), then at
the speed threshold there is a regular switching with subsequent rotor failure and loss of steps.

4.2.9.3 Selecting L, R, and backEMF parameters for EMF algorithm

After turning on the power (switching from the Power: Off state) and before starting to move, the parameters 𝑅 and 𝐿
are automatically detected (a short beep is heard). If these parameters are set via the mDrive Direct Control interface,
the stage is skipped. To re-evaluate the parameters, the engine must be returned to the Power: off state.

4.2. Kinematics and rotation modes 57

mDrive User Manual, Release 3.1.2

On the Stepper motor tab, you can additionally assign the following parameters:

1. Resistance - winding resistance 𝑅 Ω

2. Inductance - winding inductance 𝐿 H

3. Back EMF coefficient - the flux linkage of the rotor 𝜆𝑚 Hm/A

4.2. Kinematics and rotation modes 58

mDrive User Manual, Release 3.1.2

4. The value of all these parameters is saved in the engine profile.

Automatic detection of the back-EMF parameter works satisfactorily for most engines. However, assigning parameters
via a profile provides greater stability of the algorithm.

The values 𝑅 Ω and 𝐿 H must be taken directly from the dataset.

The value of the rotor flux linkage 𝜆𝑚 Hm/a can be obtained as follows:

In the datasheet, the value of the motor’s Electromechanical coefficient 𝐾𝑚 (torque constant, Hm/A) or the counter-
EMF coefficient 𝐾𝑒𝑚𝑓 (backEMF constant, Vs), then

𝜆𝑚 = 4𝐾
𝑛 , where 𝐾 is the value of 𝐾𝑒𝑚𝑓 or 𝐾𝑚, 𝑛 - number of steps per revolution.

In the datasheet, the rated current 𝑖𝑛 (nominal current, A) and the holding torque 𝑇𝑛 (holding torque, Hm), then
𝜆𝑚 = 4𝑇𝑛

𝐼𝑛𝑛
, where 𝑛 - number of steps per revolution.

4.2.9.4 The choice of PID coefficients for EMF

In field control mode, when the rotor position estimation is available, the position is controlled using a standard PID
controller. Its coefficients ensure the stability of the engine in the area of high speeds.

The accuracy of working out a position by profile is determined by many factors:

• In hold mode - the ratio of the hold force to the interference force is the same as for all open-loop algorithms;

• At low speeds - the discrepancy between the actual position and the profile position should not exceed one step;

• At high speeds - the discrepancy can be several steps, due to transients, feedback coefficients, and the presence
of external forces.

We suggest using a standard set of coefficients: 𝐾𝑝 = 3.6, 𝐾𝑑 = 0.028, 𝐾𝑖 = 38

• 𝐾𝑝 increasing the coefficient increases the accuracy (reduces the 𝜃𝑒 error), reduces the adjustment time;

• 𝐾𝑑 increasing the coefficient increases the damping of the system and reduces vibrations. A low coefficient can
cause instability because the 𝐾𝑑 value is too small;

• 𝐾𝑖 has little effect on accuracy in transient modes, but it reduces the steady error when moving at a constant
speed and acceleration, and also allows you to compensate for constant external forces. In many applications, it
can be accepted as null. If the value is too high, stability is lost.

4.2.9.4.1 Operation algorithm

The controller input is:

• 𝜃𝑟 - desired rotor position (rad), the value of which is generated by the speed profile generator

• 𝜔𝑟 - the desired angular speed of rotation of the rotor (rad/s), the value of which is generated by the speed profile
generator

• 𝜃𝑚, 𝜔𝑟 - rotor position (rad) and speed (rad/c) calculated using the rotor position estimation

Output: 𝐼𝑞𝑟 - the current value (À) that determines the torque generated by the engine: 𝑀 = 𝑘𝑚𝐼𝑞𝑟, where 𝑘𝑚 is the
Electromechanical coefficient (torque constant) of the engine

Parameters: 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 - feedback coefficients (values set in the “PID control” tab).

Control law: 1. Calculation of the control error: 𝜃𝑒 = 𝜃𝑟 − 𝜃𝑚, 𝜔𝑒 = 𝜔𝑟 − 𝜔𝑚, 2. Calculation of current:
𝐼𝑞𝑟 = 𝐾𝑝𝜃𝑒 +𝐾𝑑𝜔𝑒 +𝐾𝑖

∫︀ 𝑡

0
𝜃𝑒𝑑𝜏

The controller is equipped with an anti-accumulation loop based on the conditional integration algorithm. The growth
of the integral part stops if the current saturation occurs (|𝐼𝑞𝑟| > 𝐼𝑚𝑎𝑥𝑎𝑛𝑑𝐼𝑞𝑟 · 𝜃𝑒 < 0)

4.2. Kinematics and rotation modes 59

mDrive User Manual, Release 3.1.2

4.2.10 Feedback encoder
This is the mode when all parameters of the engine including position and velocity are measured directly by the
encoder and are denominated basing on counts of encoder. The position is displayed directly in the encoder counts,
the speed is denominated in RPM (revolutions per minute). The speed is calculated by the controller basing on the
speed alteration data as well as on the number of encoder pulses per one complete revolution of the motor shaft that are
displayed in feedback configuration block at the Settings of kinematics (Stepper motor), (BLDC motor) folder. Note
that in the case of BLDC motor the speed maintaining mode, the mode of movement to the predefined point as well as
all their derivations use PID control algorithms and the appropriate settings are required. The driving encoder mode
optimizes stepper motor control, this leads to noise reducing and facilitates a stable passage of the resonant speeds
with no risk of steps loss when the coordinate flounders and the recurrent calibration is required.

Set Feedback to Encoder on the Device -> Stepper motor page. Note, that position is in encoder counts now.

4.2.11 Feedback encoder mediated
This mode of operation is optimally used in systems with large backlash to get to the desired coordinate in a few
iterations, on average from 3 to 10. This mode is used for stepper motors.

For this mode, all motor parameters, including position and speed, are set and displayed directly by the encoder and
have dimensions based on the encoder readings. However, in the controller the movement itself is carried out in steps.

Principle of operation: The coordinate values obtained from the external interface are converted into steps and the
first iteration of the motion is performed,upon completion of which the position of the encoder is checked. Thereafter
the deviation values for the new iteration are determined and a new entrance cycle is carried out. It occurs until the
moment when it hits the specified coordinate with a given accuracy.

Use mDrive Direct Control and set Feedback to Encoder mediated on the Device -> Stepper motor page.

4.2.12 Stop motion modes
There are two stop motion modes in the controller:

• Immediate stop;

• Stop with deceleration.

4.2.12.1 Immediate stop

Immediate stop is initiated by the command STOP. The controller tries to instantly stop the rotation of the motor shaft.
This can lead to missed steps in a stepper motor, if no feedback is used. Abrupt cessation of movement can adversely
affect the equipment, for example, may shift samples on the microscope stage or require additional adjustment of the
optical line after a sudden stop.

Warning: When the controller is configured to trigger a stop on the left/right limit switch, it always occurs
immediately when the stage reaches the limit switch. This should be avoided.

4.2.12.2 Stop with deceleration

Stop with deceleration is initiated by the command SSTP. A smooth stop occurs with deceleration Deceleration, if it
is not disabled in the acceleration mode settings.

Warning: If the acceleration mode is disabled, then there is no difference between the immediate stop and the
stop with deceleration. An SSTP command will then result in an immediate stop.

4.2. Kinematics and rotation modes 60

mDrive User Manual, Release 3.1.2

4.3 Main features

4.3.1 Supported motor types
Currently the controller supports stepper and BLDC motor types. The parameters of supported motors are described
in Specifications chapter.

4.3.1.1 Stepper motors

Rated current is the main parameter of the stepper motor. The rated current is adjustable at the Settings of kinematics
(stepper motor) section.

Important: The motor will gradually overheat and get physically damaged if rated current is exceeded. Make sure
that the rated current value is set according to the used stage. All the settings are proper in default stage profiles.

Step division mode is another important parameter. In full step operation, the motor moves through its basic step angle
(for example, a 1.8° step motor takes 200 steps per motor revolution). Microstepping can divide a motor’s basic step
up to 256 times. Microstepping improves low speed smoothness and minimizes low speed resonance effects.

The following step division options are available:

• 1 (full) step

• 1/2 of the step

• 1/256 of the step

The microstep mode is set either on Settings of kinematics (stepper motor) page or by motor adjustment commands.
See the Communication protocol specification and the description of the related functions in the Programming guide
chapter.

Note: The controller always uses the internal step division value equal to 1/256. If the user selects a coarser step
division, the software will display only the multiple of the coarser step division positions and both adjustment and
transmission are possible only in that coarser step division mode. This is done for compatibility with both obsolete
and actual software operating with small multiples of the step division values. On the other hand, operations with the
largest step division value provides the most smooth and silent rotation at the smaller speed values.

The number of steps per revolution is the another direct parameter of the stepper motor. This setting does not affect
the rotation but is used in slipping control block or with motors with the encoder feedback.

Note: The controller supports stepper motors with feedback sensor - encoder. The encoder can be used as the
main position sensor (more info) and as the slippage, backlash or steps loss detector (more info). Using the encoder
facilitates a stable passage of the resonant speeds without movement disruption.

4.3.1.2 BLDC motors

Unlike stepper motors, controlling BLDC motors requires feedback. Currently only encoder is supported as a feedback
sensor.

Main BLDC motor parameters are maximum current and number of poles, which can be set on Settings of kinematics
(BLDC motor). Main encoder parameter is counts per revolution.

Like DC, BLDC engine is controlled by the PID regulator. Please carefully read PID-algorithm for BLDC engine
control before you start working with it.

4.3. Main features 61

https://www.zaber.com/wiki/Tutorials/Microstepping

mDrive User Manual, Release 3.1.2

Important: Wrong PID regulator settings, current and encoder settings might lead to stage failure

4.3.1.3 Engine selection criteria

Pulse-width modulation (PWM) is a widely used way to control winding’s current in different motor types. It leads
to current oscillations at PWM switching frequency (so-called “current ripple”). Current ripple’s amplitude depends
on motor characteristics like its winding inductance and resistance. Motor can heat up more than it is expected with
nominal current due to current ripple, i.e. 𝑃𝑟𝑒𝑎𝑙

𝑅𝐼2
𝑠

> 1. There is 𝑅𝐼2𝑠 - power dissipated by 𝐼𝑠 (stabilization current),
𝑃𝑟𝑒𝑎𝑙 - real power, dissipated in motor. For overheating estimation we recommend to use this graph:

4.3. Main features 62

mDrive User Manual, Release 3.1.2

All the major engines and their parameters have been marked in following table:

Table 4.1: RT/L values for some motors
Motor RT/L
20 0.19576
28 0.07253
28s 0.07168
4118L1804R 0.02715
4118S1404R 0.02844
4247 0.0273
D42.3 0.0223
5618 0.0146
5618R 0.0146
5918 0.0116
5918B 0.012
VSS42 0.029
VSS43 0.0256
ZSS 0.04248

The motor’s overheat is determined by this sequence:

• 𝑅𝑇
𝐿 calculation. There is 𝑅,𝐿 - resistance and inductance of motor winding (refer to the motor documentation).
𝑇 - PWM period time. It’s value should be 51.2 us for stepper motors and 25.6 us for DC motors.

• 𝑉
𝑅𝐼𝑠

calculation. This parameter shows power voltage excess under nominal voltage. There is 𝑉 - power
voltage,:math:R - winding resistance, 𝐼𝑠 - stabilization current.

• Overheat definition. After first two steps point can be plotted at the graph. Now we should define the region,
which corresponds to overheat degree. For example, the region between 1.1 and 1.2 corresponds overheat value
between 1.1 *𝑅𝐼2𝑠 and 1.2 *𝑅𝐼2𝑠 .

4.3.2 Motor limiters
Motor winding current and voltage limiters and motor shaft revolution speed limiters are provided to ensure safe
operation. These limiters, if activated, will lead to gradual power and rotation speed decrease until the parameters
being limited are within acceptable range. Motor limiters work with voltage and current values directly on motor
windings, unlike critical parameters, which work with current and voltage at the controller input. Another distinctive
feature of limiters is that they do not stop the motor and let the controller enter Alarm state; they merely limit voltage,
current and motor revolution speed.

For BLDC motors:

• Max voltage is the nominal motor voltage. It defines maximum motor winding woltage. It is usually used to
limit voltage growth when the motor or stage is jammed. Should only be used if maximum motor winding current
is unknown. This parameter is used in PID regulator.

• Max current defines maximum engine winding current. It is usually used to limit current growth when the stage
is jammed. One should set this limit based on maximum current which can be sustained by the motor without
damage (primarily by heating).

• Max RPM is the maximum motor shaft revolution speed. Is usually used to limit revolution speed when working
with reducing gears and other devices which have strict maximum speed limits.

Note: One should be aware of the distinction between maximum motor current and nominal current. In general they
may be different because of motor cooling features and operating conditions. Also, one should not mix up maximum

4.3. Main features 63

mDrive User Manual, Release 3.1.2

current and starting current with stationary motor shaft.

Important: Changing maximum motor voltage might disrupt PID regulator. For more information see PID-algorithm
for BLDC engine control.

Important: Maximum motor voltage may exceed nominal voltage, usually by 10-15%. If you are using a motor with
low load and you need high motor speed, then you can increase maximum motor voltage.

Current limiter operation.

It is important to note that maximum current limiter does not react immediately when working with BLDC motors.
When a higher than maximum current is detected in the motor winding, voltage supplied to the motor is gradually
decreased until winding current is less than Max current. In the worst case of a rapid jam during high-speed movement
motor voltage may decrease for at most 370ms. If the current limit is chosen right, motor should not overheat during
this time.

Note: If the Max current value is set too low, it is possible that BLDC motor will not be able to move under high load
or high friction.

For stepper motors:

• Max(nominal) Speed is a maximum motor shaft rotation speed in steps per second. Current stepper motor speed
is defined by Speed parameter (see Predefined speed rotation mode).

• Nominal current defines maximum motor winding current. This value cannot be exceeded due to characteristic
stepper motor control.

In the mDrive Direct Control software limiter settings are described in sections Settings of kinematics (BLDC motor)
and Settings of kinematics (stepper motor).

4.3.3 Limit switches

4.3.3.1 Limit switches designation

Limit switches are designed in order either to prevent the stage movement out of permissible physical movement
range or to limit its movement range according to user-defined requirements. Incorrect setting of the limit switches
may result to stage jam if the controller goes beyond the permissible range.

4.3.3.2 General settings

If the limit switch is active, a corresponding flag is placed in the state structure and the appropriate icon (left or right)
is displayed in mDrive Direct Control Main window. The controller can either stop any movement in the direction of
any active limit switch (left or right) or stop the movement to the single limit witch (left or right) or not to limit the
movement. Limit switches settings are performed in mDrive Direct Control software (see the Motion range and limit
switches section).

4.3.3.3 Programmable motion range limitation

If there are no hardware limit switches for the motion range but the stage requires such limitation, the programmable
limiters can be used. For doing that, the limiters should be switched to limitation mode according to position reading
(see the Motion range and limit switches section). The left and right margin fields are used (the right margin value
should be higher than the left one). In this mode, the left limit switch is active if the actual position is less than the left

4.3. Main features 64

mDrive User Manual, Release 3.1.2

margin value and the right one is active if the actual position is greater than the right margin value. The operation time
is about one millisecond.

Warning: The programmable motion range limitation is reliable only if there is no direct setting of the new posi-
tion by ZERO or SPOS commands, or if there is no steps loss or encoder malfunction if it is used for positioning,
or if there is no frequent power-cut during the rotation. If any of these problems appears, the programmable range
should be re-adjusted. The appropriate reference sensor allows the automatic re-adjustment using the automatic
Home position calibration feature.

4.3.3.4 Hardware limit switches

The controller may operate with limit switches based either on dry contacts, or on optocouplers, or on reed switches,
or on any other sensor types generating a 5V TTL-standard “logic one” electric signal in one state and a “logic zero”
in the other. Each limit witch may be configured independently. There is also possible to change the position of limit
switches or their polarity in software.

Note: Limit switches are also useful for automatic Zero position calibration.

4.3.3.5 Limit switches connecting instructions

Limit switches should be connected to DVI-I connector pins as it is shown at the diagrams:

Fig. 4.17: The “optocoupler” limit switches connection diagram

Fig. 4.18: The “dry contact” limit switches connection diagram

4.3.3.6 Limit switches location on translators

The settings of which limit is left or right is required by the controller. Sometimes it is unknown a priori, just it is clear
that both limit switches are connected and fire if the corresponding limit of the motion range is reached. The stage jam
is possible if the limit switches are configured improperly. Therefore, the controller supports just a simple detection
of incorrectly configured limit switches, shutting down the movement on both of them. Please make sure that their
polarity is configured correctly and the shutdown mode is activated on both of limit switches. The flag of improper
limit switch connection detection should be turned on in corresponding mDrive Direct Control software menu. Start
the movement to any direction until the limit switch shuts the movement down. If there was right-side movement but
the left limit switch became active, or vice versa, the limit switches should be interchanged (see the Motion range and

4.3. Main features 65

mDrive User Manual, Release 3.1.2

limit switches chapter). If the improper actuation of the limit switch is detected and if the corresponding feature is set
in the Critical parameters menu, the controller can turn the Alarm mode on.

Warning: The protection against mistaken limit switches connection doesn’t guarantee the complete solution of
the problem, it only makes the initial configuration procedure easier. Particularly, don’t start the movement if any
of the limit switches is active, even if the protection is on.

4.3.4 Automatic Home position calibration
Autocalibration (homing) is used for detection and placing the movement to the starting position (it can also be called
“home” or “zero” position). Calibration comes to automatic accurate detection of the limit switch, the revolution
sensor signal or moment of getting the external synchronization pulse which determines the zero position, and grading
from it by a specified offset. This allows one to start working in a situation when the current position of the stage is
unknown, but the location of one reference point (initial position) relative to the limit switch or some other signal is
known. The homing process does not require programming skills from the user.

The reference point (stop signal) is determined in one of three ways, depending on the settings selected by the user:

• Movement until the limit switch is reached - in this case, the current settings of the limit switches (location,
polarity) are used. For more details please refer to Motion range and limit switches chapter.

• Movement until a signal from the revolution sensor is received, in this case the current settings of the revolution
sensor are used. For more details please refer to Position control chapter.

• Movement until the signal from the synchronization input is received, in this case the actual configuration of
synchronization input is used. For more details please refer to Synchronization settings chapter.

Warning: If the synchronization input is software-disabled in the appropriate settings menu, then the signal from
it will never be processed.

4.3.4.1 Standard homing algorithm

Depending on the settings the homing can be processed using three different algorithms. The standard search for
a home position is the following: the controller starts moving with the preset parameters of speed and movement
direction until a stop signal is received. The speed of homing is usually set lower than the working speed in order to
“not miss” the arrival of the stop signal and improve the calibration accuracy. Then an absolute offset is made at a
working speed to the preset standoff distance.

The resulting point is called the starting position or “home position”. It is important to note that its location on the
stage does not depend on the initial position from which calibration started.

4.3.4.2 Accurate additional calibration

After the stop signal is received the position of the controller is already determined. But before making a shift to the
home position one can perform the additional movement towards the next stop signal (the second phase of homing).
This allows to reach an accuracy in setting a home position of 1/256 steps for stepper motors or 1 encoder count
for BLDC motors for some stages. If the corresponding flag is set, the controller rotates the motor in a user-defined
direction with the preset speed until a stop signal is received from the source selected by the user. Then, as for the
standard algorithm, the offset is made at a working speed to the preset standoff distance.

The parameters of the second phase of homing (speed, movement direction and the source of the stop signal) are
set independently of the first phase parameters settings. At the same time it is reasonable to use the signal from the
revolution sensor placed on the motor shaft previous to the gear and perform movement at a low speed - this will
provide the maximum accuracy. Since the stop signals for the first movement and the second movement can coincide,
a special flag is provided in the software to start tracking the stop signal for the second movement only after making

4.3. Main features 66

mDrive User Manual, Release 3.1.2

a half turn of the motor shaft. This avoids the ambiguous sequence of receiving stop signals for the first and second
movements. As a result of the optional second movement the calibrated position is refined.

Note: In case the second phase of homing is used the first movement can be performed at high speed since it only
roughly calibrates the position and accuracy is not required there. The accuracy will not be increased in case the
second limit switch is used for the second phase of motion since its physical parameters do not differ from those of
the first limit switch.

4.3.4.3 Fast homing algorithm

When the fast homing is enabled the controller starts to rotate the motor towards the preset direction with a working
speed in order to quickly find the position of the reference point. After the stop signal is received the controller pulls
the motor back for half a turn and starts moving again in the preset direction but takes the speed value specified in the
settings of the first phase of homing. After the repeated stop signal is received the offset is made at a working speed to
the preset standoff distance. The stop signal source is also set by the standard homing algorithm settings.

The fast homing algorithm is optimal for most motors and positioners.

4.3.4.4 Autocalibration features

Successful completion of home position calibration results in assertion of the STATE_IS_HOMED flag in the con-
troller state structure. In case the home position is somehow lost after the calibration (stop on limit switch, immediate
stop while moving, the detection of loss of steps, switching to the alarm mode), the corresponding flag is dropped and
it is necessary to re-calibrate the home position.

Note: The position reached as a result of calibration will slightly depend on the speed of the last motion until the
selected sensor responsed. Therefore, don’t change the speed parameters for further successful reaching the same
position.

Note: If command immediate stop or command power shutdown are executed while the engine is stopped then it isn’t
necessary to re-calibrate the home position and the STATE_IS_HOMED flag is not dropped.

The description of the functions for auto-calibrating a home position is given in the Programming guide chapter.

Autocalibration commands are described in the Communication protocol specification chapter.

Autocalibration can be configured by the user in the mDrive Direct Control program on the Device tab -> Home
position (see the section Home position settings), and started with the Go home button in the mDrive Direct Control
main window.

A set_zero script is supplied with mDrive Direct Control software pack, providing the automatic home position
configuration. This script changes the Standoff setting at Home position settings tab, making the actual position as the
Home one.

How to use the script:

• place the movement to the desired position,

• launch the script and wait until it’s finished.

As a result, the stage will be moved in the same position where the set_zero script was called and all the following
calls of homing function will move it there. Make sure to save the settings to controller’s nonvolatile memory.

4.3. Main features 67

mDrive User Manual, Release 3.1.2

4.3.5 Operation with encoders

4.3.5.1 Application of encoders

Encoders are designed for creation of accurate and fast feedback according to the coordinate for all the electric motor
types.The feedback is performed by the motor shaft position, by stage’s linear position, by the motorized table rotation
angle or by any other parameter related to the shaft position and measured by using the two-channel quadrature encoder
complying the requirements described in Specifications chapter for the appropriate controller type. Controller mDrive
supports differential encoders and simple (single-ended) encoders..

Warning: Auto-detect works only with 3.3 V and 5 V (with error 0.2 V) encoders.

4.3.5.2 What is quadrature encoder?

Encoder is a mechanical motion sensor. The quadrature encoder is designed for direct detection of the shaft position.
The sensor transmits the relative shaft position by using two electric signals at CH A and CH B channels shifted
relative to each other at 1/4 of period.

Fig. 4.19: The signals at CH A and CH B outputs of quadrature encoder

Fig. 4.20: An optical quadrature encoder mechanics

An optical quadrature encoder mechanics is shown at the figure above. There are two optocouplers used. The oper-
ational principle of an optocoupler is as following: a LED and a detector are arranged opposite to each other from
different sides of a disc. The optocoupler opens when disc’s “window” coincides with the detector (the outgoing signal
is logic zero). The outgoing signal is logic one if the detector is closed by opaque part of the disc.

Number of steps per revolution (CPR) is the main parameter of the quadrature encoder. The standard resolution values
for encoder are from 24 to 1024 CPR. Each period of signal alteration is interpreted by 1, 2 or 4 codes which is
corresponding to X1, X2 and X4 operating modes. This controller uses the most accurate X4 mode. The maximum

4.3. Main features 68

mDrive User Manual, Release 3.1.2

frequency of each encoder’s signal depends on the applied encoder itself, since for 200 kHz in X4 mode the controller
can read up to 800,000 encoder counts per second.

4.3.5.3 Controller’s features

There are two operating modes with encoder available for the controller:

• the encoder is used as the main position sensor.

• slippage, backlash or steps loss detection (the recommended mode for joint operations with stepper motors, in
case the encoder is not used as a primary position sensor, see more).

4.3.5.4 Encoder connection

The encoder is connected to the controller via DVI-I pin connector, which is in controller board, one-axis and multi-
axis.

Fig. 4.21: The diagram of single-ended encoder connection using DVI-I connector.

Fig. 4.22: The diagram of differential encoder connection using DVI-I pin connector.

See also the Example of a motor connection chapter.

4.3. Main features 69

mDrive User Manual, Release 3.1.2

Warning: Encoder inputs of the controller internally pulled up to logic one by using the 5.1kΩ resistors. Fre-
quently encoder outputs are of “open collector” type equipped with internal pull-up resistor. During the data
transmission they provide good characteristics while passing from higher logic level to lower. However, the pass
from logic 0 to logic 1 is more graduate. It passes through the RC circuit formed by pull-up resistor and cable
capacitance. This is the most important thing if the cable is long (up to 5 meters). If the internal pull-up is not
sufficient, the pull-up resistor with r=1.5kΩ may be added for every +5V to each output in order to improve the
transmission speed parameters; before doing that please check if the open collector of the encoder can transmit
5mA current. The resistors insertion diagram is shown above. The maximum operating speed for quadrature en-
coder may be increased by adding a push-pull driver with the outgoing current over 10mA to its output, providing
quick 0 - 1 and 1 - 0 transmission edges.

4.3.5.4.1 Operation with long cables

For correct encoder operations on cables longer than 5 meters, it is recommended to use an encoder with a differential
output (RS-485) to reduce the effect of electromagnetic interference. When using the RS-485, all differential pairs
must be terminated with a 120 Ohms resistor in the connector to the controller.

The cable must have an additional internal shield for digital signals (pins 2-4, 9-24) connected to the DGND (pin 18)
on the controller side and on the stage side. The external shield must be connected to the metal case of the connector
directly on the side of the stage and to the metal case of the connector through a 47 nF capacitor on the side of the
stage.

4.3.5.4.2 Automatic encoder type detection

The mDrive controller can automatically detect the type of encoder if the corresponding option is enabled. This
system is designed to work with standard CAT-5E cables up to 50 meters long and with a conductor resistance about
80 mOhm per meter. Automatic detection may not work well with cables longer than 50 meters or with non-standard
cables with high resistance wires. In case of problems with automatic encoder type selection, encoder type can be
selected manually in the feedback settings.

4.3.6 Revolution sensor
Revolution sensor is designed for stepper motor shutdown (failure) detection and for better accuracy of Home position
calibration procedure (see Automatic Home position calibration).

The controller may receive the actual position data from the external revolution sensor mounted on the stepper motor
shaft. The sensor transmits its signals to the controller once or many times per one revolution of the motor.

Usually the revolution sensor is a small disc with precise graduation scale mounted on the motor shaft. A light source
(LED) and a sensor of the optocoupler are placed at the opposite sides of the disc. The sensor is open if there is no
interrupter between the LED and the sensor (the logic zero is transmitted to optocoupler’s output), whereas the logic
one is transmitted if the light source is closed by the interrupter.

By default, the lower logic level is interpreted by the controller as the active mode of the revolution sensor. The
controller’s input is pulled to logic one level, thus, the disconnected revolution sensor means its inactive mode. The
controller’s input can be inverted if necessary, in that case the logic one level will mean the active mode.

4.3.6.1 Connection diagram

The revolution sensor should be connected to the controller via DVI-I connector, which is in all systems (controller
board, one-axis and multi-axis in box).

4.3. Main features 70

mDrive User Manual, Release 3.1.2

Fig. 4.23: Scheme of revolution sensor connection to the mDrive based system

4.3.7 Steps loss detection
This mode is generally used while operating the stepper motor at full speed or limit loads when the shaft jam resulting
to the steps loss is possible. In this case an additional position sensor (revolution sensor) or encoder allows tracking
this moment, informing the user about it. This feature should be applied with stepper motors only and it allows
detection of the steps loss. Steps and microsteps are the measurement units for all coordinates and shaft positions.

When the encoder is used, the controller stores both number of steps and number of encoder’s counts per revolution
(see the Settings of kinematics folder of mDrive Direct Control program). When the feature is activated, the controller
saves the current position in steps of the motor and the current position according to the encoder data. Then, during
the motion, the position data according to the encoder converts to steps and if the difference exceeds the predefined
value then the slippage is indicated and the Alarm mode turns on (if the related option is active). For more information
regarding use of encoder as the steps loss detector please refer to Operation with encoders chapter.

If the revolution sensor is used, the position is controlled according to it. The controller stores the current position in
steps according to active and inactive edges at the sensor’s input. Then, at every revolution (number of steps per one
full revolution is set by Steps per turn parameter, see the Settings of kinematics (stepper motor) chapter) the controller
checks if the shaft has been displaced and how many steps for. If the mismatch exceeds the predefined Threshold value
(which is defined in position control settings, see the Position control chapter), the slippage is indicated by the state
structure flag. If the appropriate flag is set and if the error is detected, the controller turns the Alarm mode on and the
motor shuts down, otherwise the motion is continued. If the slippage indication flag is active, the controller turns the
Alarm mode on when the appropriate parameter in the settings is active.

Also you can enable the position correction option in the position control settings. If this option is enabled and the
steps loss is detected the controller stops the movement, adjust the step position on the basis of the encoder data and
try to start the movement again. The flag of the control position error The position control error flag is set when the
desynchronization of the steps and the encoder position is detected and it will be unset automatically when the position
becomes corrected. If the controller is not able to eliminate the desynchronization the controller is set the position
control error flag and goes to the Alarm mode. If the steps loss happens during the movement the movement command
status will not be changed while the position is correcting. If the steps loss happens during holding a position the move
to position command will be executed for return the motor axis to the holding position.

Note: For using the position correction function you should have the encoder with the resolution at least two counts
per the motor step.

Note: For correct operation of the position correction option you should let the controller to hold the position during
1 second for calibration before moving. It necessary to repeat the calibration after the transition to the Alarm mode or
after changing the settings.

Note: If the automatically position correction is used it is not recommend to set the Threshold value above than 3
steps because in this case not any slippage will be corrected.

4.3. Main features 71

mDrive User Manual, Release 3.1.2

Note: The soft stop and the hard stop commands could be ignored by the controller if it was sent during position
correction process. In this case you can send the soft stop command twice for power off the motor windings.

Note: If you use the software limit switches it is not recommend to use the automatic position correction because the
limit switches positions will be changed during position correction process.

Note: A hard STOP launches the the re-calibration process of the revolution sensor position, and the calibration starts
after the revolution sensor activates during the motion controlled by the motor. It means that the slippage won’t be
detected if the shaft has been rotated manually right after the hard stop since the calibration hasn’t been performed yet.

Note: If the motor revolution sensor is bouncing (mechanically), the misoperations of the revolution sensor are
possible at the very low speeds.

Note: The position control of the revolution sensor can’t detect the shaft rotation at the zero speed, i.e., if the motor
is shut down and the shaft is rotated manually, it won’t be detected.

4.3.8 Power control

4.3.8.1 Current consumption reduction

Controller has an option to set current when idle to reduce power consumption. This mode is active by default. It is
widely used to lower stepper motor heating in hold mode while keeping position maintenance accuracy. Hold current is
set as a percentage of nominal winding current. A time delay after which current will be reduced is also defined. Cur-
rent reduction mode can be disabled. To set current reduction see set_power_settings function in Programming guide
or mDrive Direct Control Power consumption settings page. Nominal engine current is set by set_engine_settings
function (see Programming guide) or on Settings of kinematics (stepper motor) page in mDrive Direct Control.

A reasonable hold current level is 40-70%. This will lower power consumption 2-4 times, while keeping holding
force sufficient. A reasonable time to reduce power lies in 50-500 ms range. This is a sufficent time for mechanical
oscillations, which might knock the system out of the hold position, to subside.

4.3.8.2 The motor power shutdown

There is also a power shutdown mode to reduce power consumption of a stepper motor. It is mostly used to stop
wasting power on position hold, when no movements are performed for a long time. This mode is on by default, but
can be disabled by the user. Time from motor stop to power off is set in seconds. A reasonable time is 3600 seconds
(one hour). To set power off options see set_power_settings function in Programming guide or mDrive Direct Control
Power consumption settings settings page.

4.3.8.3 Time delay calculation specifics

All timeouts work in the follwing way: on each transition to stop state time is saved with millisecond accuracy. After
certain set time is elapsed depending on PowerOff/CurrentReduce enabled state a motor will reduce winding current
or turn its power off. All settings can be changed online. For example, if you increase PowerOff timeout value after
the poweroff has already happened then windings will get powered on and a PowerOff function will activate after the
new delay. Timeout countdowns cancel after each movement start.

4.3. Main features 72

mDrive User Manual, Release 3.1.2

4.3.8.4 Jerk free function

Sometimes smooth motor winding current changes are required to reduce vibrations of a mechanical system. That’s
why a Jerk free option is provided, which allows one to set current ramp-up time from zero to nominal value with
millisecond precision. When this option is turned on all changes to stabilization current or winding powerdown will
happen with smooth current increase or decrease. For example, if jerk free time is set to 100ms and the controller
needs to reduce current to 50% it will be reduced over the time of 50ms (because 100ms are required to reduce current
from full to zero). To setup Jerk free see set_power_settings function in Programming guide or mDrive Direct Control
Settings of kinematics (stepper motor) page.

Smooth current change function activates on any change in the amplitude of the winding current, for example on
nominal hold current change. In this case current change speed is calculated based both on older and newer hold
currents, whichever is higher. If controller needs to turn off the motor windings then current is gradually ramped down,
then power output circuits are disconnected. If controller needs to power up the windings, then they are powered with
zero current which increases up to nominal current.

There are exceptions to the rule, when the current is immediately reduced to zero even if Jerk free option is active.
These are the critical errors/Alarm state (see Critical parameters) and controller reset events on firmware update.
These events are rare and should not happen during normal stage operation.

A reasonable Jerk free time is 50-200ms, which merely leads to low-energy mechanical oscillations on 3-10 Hz
frequencies which are significantly lower than noise from other common sources. Higher Jerk free times will lead to
constant delays when current is switched on or off.

4.3.9 Critical parameters
Minimum and maximum values of currents, voltages and temperatures are used for safe controller operation. Any
value out of acceptable range leads to the motion stop, windings power-down and Alarm state for the controller.
Exiting the Alarm state is possble only after the critical parameter returns to normal and the STOP command is sent
to the controller. Critical settings are used for all motor types.

The following parameters are available:

• Low voltage off defines the minimum voltage value of the controller power supply (measured in tens of mVs).
The Low voltage protection flag is used to turn this option on, otherwise the minimum unpowering threshold
doesn’t work. The 6000 mV to 8000 mV range is sensible for operating power range of 12 V to 48 V. This
type of protection helps to determine the power-cut moment due to activation of any sort of power supply unit
protection. This may occur if the operating power consumption of the stabilized power supply unit is exceeded.

• Max current (power) defines the maximum current of the controller power supply (measured in mAs). The
sensible value is twice the maximum operating consumed current registered during the tests. Use the mDrive
Direct Control charts for registration of the consumed current.

• Max voltage (power) defines the maximum voltage value of the controller power supply (measured in tens of
mVs). The sensible value is 20% higher than power supply unit voltage.

• Temperature defines the maximum temperature of the microprocessor (measured in tenths of degrees Celsius).
The microprocessor can operate at the working temperature of up to 75ºC and doesn’t overheat by itself. Rise
of its temperature indirectly indicates the overheating of the power part of the board. The overheating threshold
range from 40ºC to 75ºC is sensible.

Flags:

• ALARM_ON_DRIVER_OVERHEATING means entering the Alarm mode if the driver’s critical temperature
(over 125ºC) is exceeded. The power driver indicates if its temperature is approaching the critical value. If the
driver is still working then the further heating will automatically shut it down. It is recommended to set this flag
and not to rely on automatic forced shutdown.

• H_BRIDGE_ALERT means turning the Alarm mode on if any fault of the power driver due to board overheating
or damage is detected. This flag should be set on.

4.3. Main features 73

mDrive User Manual, Release 3.1.2

• ALARM_ON_BORDERS_SWAP_MISSET means turning the Alarm mode on if the triggering of the wrong limit
switch, not corresponding to direction, is detected (see the Limit switches chapter). This flag is intended for clear
indication of the response of the limit switch swap detection subsystem. The flag is recommended to be set on.

• ALARM_FLAGS_STICKING flag activates the sticking of the error indicators in the status structure of the con-
troller, otherwise indicators are active only during the accident that caused the error. If there was a short-time
error and its cause was independently removed, then sometimes the reason of Alarm remains uncertain. In that
case the sticking is useful and the accident cause can get diagnosed in mDrive Direct Control main window.

• USB_BREAK_RECONNECT - This flag configures the operation of an USB break reconnect block. When set,
this unit starts to operate and monitor the loss of communication over the USB bus (for example, in case of a
static discharge).

Configuration of parameters is described in Critical board ratings menu of mDrive Direct Control software. The
maximum available value configuration commands are described in Programming guide.

4.3.10 Saving the parameters in the controller flash memory
The controller provides an option to save all its parameters into the non-volatile memory. The configuration is restored
when the controller is powered on, after that the controller itself is instantly ready for operation. The stage requires no
new adjustment every time the power is on. The controller stores its user-defined name which is useful for its further
identification.

The non-volatile memory stores all the actual operating parameters of the controller related to Device section of
mDrive Direct Control settings menu. Either Save settings to flash button of mDrive Direct Control program or
command_save_settings function are used for it (see the Programming guide chapter).

All the configuration parameters can get restored to controller’s RAM from the non-volatile memory, not only when the
power is turned on but also by clicking the Load setting from flash button of mDrive Direct Control program which
provides the access to the data saved in the flash memory. Internally it uses command_read_settings function (see the
Programming guide chapter). The restored settings become active instantly and all the modules of the controller get
re-initialized.

4.3.11 User defined position units
Controller position is set and read in stepper motor steps or encoder counts, if encoder is available and enabled. Is it
convenient to set position in mm (in case of translation stages), in degrees (in case of rotator stages) or in any other
natural units. Controller software can translate coordinates to user-defined units: user can set a ratio, where a certain
amount of controller steps is equal to the certain amount of user-defined units. This enables one to issue movement
commands and read controller position in these user units. It applies both to mDrive Direct Control interface and to
usage in custom programs or scripts. Speed and acceleration are also set in units derived from user-defined ones (for
example mm/s). Zero position adjustment can be done the same way in user-defined units as in encoder counts or step
motor steps.

You can enable user-defined units in mDrive Direct Control on page User units settings. You can define the name of
the natural units in mDrive Direct Control.

mDrive library functions operating in user defined units have a _calb suffix. They take calibration structure calibra-
tion_t as an additional input. For more information see Programming guide.

4.3.12 Usage of a coordinate correction table for more accurate positioning
If a shift without a linear encoder is used, the exact position will not always be in correspondence with the indications
of the axis coordinates. This is due to the accuracy of the manufacture of mechanical parts, backlashes, temperature
expansion. In this case, you can use the correction table for more accurate positioning.

4.3. Main features 74

mDrive User Manual, Release 3.1.2

Important: The table is individual for each motion. The table is formed by the manufacturer on a high-precision
stand.

Principle of operation:

After certain distances, not necessarily equal, starting with 0, the real position of the motion is measured. The dif-
ference between the specified and the actual position is recorded into the table. Based on the obtained values, with
the usage of linear interpolation, the coordinates are recalculated with the help of certain _calb functions. As a result
when moving, manufacturing inaccuracies and other possible position deviations are compensated.

Example: Suppose the following correction table is set for the stage.

X 0 5 10 15 20 25
dX 0 0.05 0.02 -0.003 0.01 -0.04

Fig. 4.24: The graph shows the coordinate deviations corresponding to the table

In order to move to position 12.5, the coordinate must be set to 0.0085 greater and that is 12.5085. This is exactly
what the algorithms of some _calb commands that use the correction table do.

You can load and clear the coordinate correction table table in mDrive Direct Control on page User units settings.

To see a list of functions, structures, and parameters that are corrected with the correction table, follow library guide
mDrive.

4.4 Safe operation

Several controller settings are directly connected with safe operation. If these settings are set wrong it may lead to
controller or stage damage. Positioning element can be damaged by exceeded power, rotation speed, or by moving
outside the allowed movement range. Usually it is enough to load a preset profile for your stage for safe operation,
where all necessary settings are already made.

4.4. Safe operation 75

mDrive User Manual, Release 3.1.2

4.4.1 Movement range bounds and limit switches
Linear stages have limited movement range, unlike circular rotators. Moving outside of the allowed physical movement
range is the main reason for stage jamming and damage. To prevent such kinds of breakages the movement range of
stages is limited according to user requirements. For this reason Limit switches are used, but in some cases when, for
example, when stage is not equipped with limit switches or has only one limit switch, movement range can be defined
in software (see Limit switches). Frequently limit switches are reversed. In this case use the mechanism of reversed
limit switches detection which is described in Limit switches section because otherwise the first motion to the border
will lead to stage jamming. Motion range and limit switches is described in corresponding section. Settings commands
are described in Programming guide.

4.4.2 Movement range limiters
Nominal winding current is the main safety setting in stepper motors. This is the main parameter which defines power
delivered to the motor. The nominal current should not exceed maximum allowable current for given motor. For more
detailed information see Motor limiters. For BLDC engines nominal current is a limiting parameter and should be
set according to the maximum permissible current through BLDC engine. If maximum current is not known, then
maximal voltage delivered to the engine may be limited. This also will prevent engine overheat although voltage
limiting is a more coarse mode than current limiting. For more detailed information see chapter Motor limiters.

Exceeding the speed limit might damage the stage or lead to faster wearout. It is necessary to set speed limit flag and
to set correct maximum speed for the given stage. For more detailed information see chapter Motor limiters.

4.4.3 Critical Parameters
Controller tracks voltages and currents which appear in its circuits and can react on their suspicious values. This
reaction blocks the engine and prevents any further movement until the source of the problem is eliminated. Due
to this it is possible to track winding-winding or winding-ground shortcuts which may happen because of stage cable
damage or damage of the stage itself. This reaction also has informational character because it allows to track incorrect
values of source voltage or oncoming overheating. That’s why you should read Critical parameters chapter and set
necessary protection. In case of dangerous situation controller will enter Alarm state and the main window of mDrive
Direct Control program will be colored in red. If this happens, track and eliminate the source of danger before you
turn off the Alarm. If you are using your own application for engine control you should pay close attention to Alarm
status flag (see Controller status).

4.4.4 Operation with Encoder
If during encoder connection sensor channels are swapped, then during engine motion encoder will show direction in
reverse. To fix these errors just set Encoder Reverse flag in Feedback section on Settings of kinematics (stepper motor)
page for stepper motors and on Settings of kinematics (BLDC motor) page for BLDC motors.

It is also possible that there is no contact with one of encoder channels. In this case during motor motion values of
sensor will be oscillating in [-1..1] range around the starting position.

During BLDC engine operation both of these errors will lead to malfunction in control algorithm, which is described
in PID-algorithm for BLDC engine control. If you have connected new BLDC engine for the first time it is strongly
recommended to check encoder connection before starting the operation. To do this you should set corresponding
regulation factor values 𝐾𝑝 = 1,𝐾𝑖 = 0,𝐾𝑑 = 0 and try to make motion to the right or to the left at a low speed.
After the motion please check if encoder values are changing in correspondence with chosen directions. Set Encoder
Reverse flag if it is needed.

4.4. Safe operation 76

mDrive User Manual, Release 3.1.2

4.5 Additional features

4.5.1 Indication

4.5.1.1 Controller status

Indication is provided in mDrive controller. For this purpose, there is one two-color LED on the front panel.

Green Power indicator shows presence of 3.3 V power supply of controller.

Red Status indicator represents controller operating mode. Simultaneous glowing of both lights looks like yellow
glow.

4.5. Additional features 77

mDrive User Manual, Release 3.1.2

Table 4.2: Power/Status indicator operation modes
Flicker frequency Hz Description
LEDs don’t glow the controller is shut down, there is no power supply
Green Power LED is glow power is supplied to the controller
Green Status LED is glow the firmware is not loaded
Yellow Status LED is
glow

the controller is in an Alarm state

Yellow Status LED is
flashes, 0,25 Hz

the controller is operating, but there is no connection to the PC via USB

Yellow Status LED is
flashes, 1 Hz

the controller is operating, waiting for the movement command

Yellow Status LED is
flashes, 4 Hz

the controller is operating, the movement command is executed

Yellow Status LED is
flashes, 8 Hz

the controller is in re-flashing mode

Yellow Status LED is
flashes, 10 Hz

the controller is in USB bus reconnecting mode

4.5.2 Operations with magnetic brake
There is an output pin on DVI-I connector for magnetic brake control, which is installed on the stepper motor shaft.
Magnetic brake is used hold motor position in unpowered state.

4.5.2.1 Description of operation

Magnetic brake consists of a magnet and a spring, which performs stops the motor shaft. In case there is no voltage
applied to the magnet the spring clamps the shaft in place which allows to keep motor position. When voltage is
applied the spring releases the shaft.

4.5.2.1.1 Controller operating sequence during stage shutdown.

Engine shutdown (the time of shutdown is recorded in controller) -> magnet power supply cut off, shaft fixation ->
board power supply cut off

During power-on the sequence is reversed.

Since any movement has inertia, the following parameters are set to control magnetic brake and the position fixation
process:

• Time between motor power-on and brake deactivation (ms)

• Time between brake deactivation and readiness for movement (ms)

• Time between engine stop and brake activation (ms)

• Time between brake activation and power-off (ms)

If magnetic brake function is turned off then controller will constantly transmit brake release signal. This allows to
move engine equipped with magnetic brake without rotor fixation during pauses. If winding poweroff function is
turned off then controller will only pause between brake switching and movement start/stop.

All magnetic brake settings can be changed online and brake will be switched to the mode which would be active in
case if the setting would have a new value. For example a large increase of brake activation delay when the brake is
already active will lead to brake deactivation and countdown to the new delay value. It is also possible to turn on or
off magnetic brake itself or winding power function.

4.5. Additional features 78

mDrive User Manual, Release 3.1.2

Table 4.3: Output electric parameters
Type TTL
Active condition (brake is released) 5-24 V (depending on EXT REF SUPPLY)
Passive condition (brake is not powered) 0 V
Operational current no more than 4 mA

Magnetic brake setting in mDrive Direct Control program is described in Brake settings section.

4.5.2.2 Magnetic brake connection diagram

To operation with the magnetic brake, a contact pin located on the DVI-I connector is used. A connection diagram is
shown below.

Fig. 4.25: Connection of magnetic brake to mDrive

Power converter is a converter from digital signals to power. If magnetic brake output is high, the magnetic brake of
stage has 24 V on its power input. If it is low, the magnetic brake has 0 V on its power input. In the most common
case a scheme with transistor and diode is used.

4.5.3 Joystick control

4.5.3.1 General information

Controller accepts an input from an analog joystick with voltage in 0-3.3 V range. Voltage in the equilibrium (central)
position and voltage in minimum and maximum position can be set to any value from the working range, if the follow-
ing condition holds: minimum position < central position < maximum position. Controller uses digital representation
of joystick input values: 0 V corresponds to a value of 0 and 3.3 V corresponds to a value of 10000.

To stop movement in the central position a DeadZone option is available, which is counted from the central position and
measured in percent. Any joystick position inside deadzone leads to the stopping of the movement by the controller.
A larger than deadzone deviation of the stick starts controller movement with the speed which is calculated from the
deviation. One can reverse the joystick with a reverse flag which can be useful to keep “right joystick offset means
movement to the right” correspondence for any physical orientation of the joystick and the stage.

Movement speed has an exponential dependence on joystick deviation from the center. This enables one to reach high
precision through small joystick shifts and high speed through large ones. Nonlinearity parameter (Exp factor) can be
varied. If the nonlinearity parameter is zero, then the motor speed will linearly depend on joystick position.

The following graph shows dependence of movement speed on joystick position for the following settings:

Central deviation 4500
Minimum deviation 500
Maximum deviation 9500
Dead zone 10%
Maximum movement speed 100

4.5. Additional features 79

https://doc.xisupport.com/en/8smc5-usb/8SMCn-USB/XILab_application_Users_guide/Controller_Settings/Settings_of_external_control_devices.html#settings-of-external-control-devices

mDrive User Manual, Release 3.1.2

Fig. 4.26: An example of motion speed dependence on joystick deviation

If joystick sits within dead zone for more than 5 seconds it will be logically considered to be out of deadzone only when
it has been physically out of deadzone for more than 100 ms. This allows user to release joystick and to be confident
that even occasional noise on joystick output won’t lead to unnecessary motor motion. While joystick is within Dead
zone the controller can receive any commands from computer including motion commands, home position calibration
commands, etc. If during command execution joystick is brought of Dead zone the motion command is canceled and
motor is switched to joystick control. This allows the user to turn on joystick control mode and use it only when
necessary.

Everything that is related to movement under the control of controller commands is also applicable to joystick move-
ment. This includes acceleration, maximum speed limit, windings poweroff delay, magnetic brake, backlash com-
pensation, etc. For example, if you suddenly release joystick handle and let it return into the deadzone, then, if
corresponding modes are on, controller will gradually slow the motor, make a backlash compensation motion, stop the
motor, fix the motor shaft with the magnetic brake, smoothly reduce current and switch off windings power.

MaxSpeed[i] and DeadZone parameter change is described in Settings of external control devices.

Important: In Joystick control mode, the virtual buttons remain in working order

Warning: Do not disconnect or connect the joystick to the switched on controller! When disconnect-
ing/connecting the joystick to the enabled controller, the joystick or controller will not burn, but the stages con-
nected to the controller will start moving to the limit switches.

4.5.3.2 Connection diagram

A contact for joystick control is located on the DVI-I connector.

Important: Analog inputs for joystick connection are designed for a range of 0-3.3 V. Be careful and do not exceed
voltage for joystick contacts.

4.5. Additional features 80

mDrive User Manual, Release 3.1.2

4.5.3.2.1 Connecting a joystick whose voltage does not exceed 3.3 V

Fig. 4.27: Connection of joystick (up to 3.3 V) to the mDrive via DVI-I connector

4.5.3.2.2 Connecting a 5 V joystick

If you want to connect a 5 V joystick, use a resistor voltage divider. Resistance can be calculated in an an online
calculator, for example. Resistors set the sensitivity zone. A connection diagram is shown below.

Fig. 4.28: Connection of joystick (up to 5 V) to the mDrive via DVI-I connector (“*” Resistance calculated individually
depending on the joystick used)

4.5.4 Left-Right buttons control
For each system it is possible to control the movement of a motor with the buttons. Active button state is programmable
and can be logical zero or one. Controller supports a 10-item speed array MaxSpeed[0-9], which is used both for
joystick and button control.

The buttons control settings are red/written by commands SCTL/GCTL (set_control_settings/get_control_settings).

• If a left or right button is clicked then motor does a shift on an offset, specified by DeltaPosition and uDeltaPo-
sition.

• If a left or right button is pressed and held for longer than MaxClickTime, then motor starts moving with
MaxSpeed[0] and counting down to Timeout[0]. After Timeout[i] microseconds have elapsed speed is changed
from MaxSpeed[i] to MaxSpeed[i+1] for any i between 0 and 9 (inclusive).

• If press the two buttons, the controller performs a stop with deceleration. Holding both buttons for 3 seconds
starts the automatic calibration of the “home” position.

Note: You can fill only the upper part of the 10-item speed array if you don’t need all of them. Controller changes
its speed to the next one only if the target speed is not zero and the timeout is not zero. For example, if MaxSpeed
[0] and MaxSpeed[1] are nonzero and MaxSpeed[2] is zero (both step and microstep part), then the controller will
start moving with MaxSpeed[0], then change its speed to MaxSpeed[1] after Timeout[0] and will keep moving with
MaxSpeed[1] until the button is released. You can also set Timeout[1] to zero and leave MaxSpeed[2] set to any value
to achieve the same result. Controller obeys its movement settings (with the exception of target speed). For example,
when changing its speed from MaxSpeed[i] to MaxSpeed[i+i] controller will either accelerate with set acceleration
value or change its speed instantly if acceleration is disabled.

The default state is set according to the voltage levels of the buttons (Output parameters). The state of each button can
be software inverted. When active, the button is considered to be down. It does not matter how the condition is active

4.5. Additional features 81

https://ohmslawcalculator.com/voltage-divider-calculator
https://ohmslawcalculator.com/voltage-divider-calculator

mDrive User Manual, Release 3.1.2

(after changing the invert states, or when changing the voltage level at the physical impact of a button). The controller
uses button contact debouncing. The button is considered pressed if active state lasts for longer than 3 ms.

Table 4.4: Output parameters
Type TTL
Logic zero level 0 V
Logic one level 3.3 V

Warning: When you turn on or reboot the controller at the input voltage level of the button is present, which is
considered to be active, the controller will accept it as a button is pressed, and begin to obey the rules described
above.

4.5.4.1 Connection diagram

4.5.4.1.1 One-axis and multi-axis systems

“Right” and “Left” control buttons can be connected to the controller board via DVI-I connector for a motor motion
control.

Connection diagram is shown below.

Fig. 4.29: Scheme of buttons connection to the DVI-I connector

4.5.5 TTL synchronization

4.5.5.1 Principle of operation

TTL-synchronization is used to synchronize controller motion with external devices and/or events. For example, the
controller can output synchronization pulse each time it moves a certain distance. Vice versa, controller can shift a
certain distance on incoming synchronization pulse, for example from an experimental setup which is ready to move
to the next measurement position.

To use mechanical contacts as an input synchronization signal a contact debouncing is provided. One can set minimum
input pulse length which is recognized as a valid synchronization signal. An active state is a logical one (see Input
parameters), and a raising edge is considered to be the start of a signal. However, if for some reason this is undesirable,
both options may be inverted independently.

Table 4.5: Input parameters
Type TTL
Logic zero level 0 V
Logic one level 3.3 V

4.5. Additional features 82

mDrive User Manual, Release 3.1.2

Fig. 4.30: Inversion of input and output syncronization pulse illustrated

Note: If simultaneous start of several controllers in a multiaxis system is desirable, minimum input pulse length
should be the same for all controllers. Contact debouncing should not be used in systems with no mechanical contacts
and short noise pulses in synchronization input channel. One should use an RC-circuit which would filter these noise
pulses instead.

Synchronization in important in multiaxis systems because it allows one to start movement on several axes simul-
taneously. To do this all axes are prepared to start the movement, all slave axes are set to start moving on input
synchronization pulse, one master axis is set to output a synchronization pulse on the start of the movement. Mas-
ter axis output is connected to slave axes’ input. In this setup any movement of the master axis leads to immediate
response of all connected axes.

Note: One should set minimum input sync pulse length to 0 if this kind of connection is used. This disables contact
debouncing, but since there are no mechanical contacts it is not needed. If minimum input sync pulse length is not
zero then to avoid desynchronization of master and slave axes one should set input sync pulse length the same for all
controllers, connect syncout to both master and slave inputs and issue start command by activating input manually.

Synchronization input and output are independent from each other and other means of motion control. Control through
mDrive Direct Control application or any other user application, joystick control and left-right buttons control are
independent of input/output synchronization state. Last command always takes priority. For example, a movement
command sent from mDrive Direct Control will cancel current movement which happened because of input sync pulse,
but will not affect output sync state. Next input sync pulse will cancel current movement initiated by user program
and will replace it with movement command according to sync in settings.

Note: Sync in settings may be saved in controller flash (non-volatile) memory. In this case everything related to
synchronization may also be said about autonomous controller operation. For example, you may set up shift on offset
on syncin pulse with syncout pulse on movement stop and connect the controller to a standalone measurement device,
which starts measurements on its own input sync pulse and outputs a sync pulse on measurement end. Then you
can run such a system without a PC, because after the first sync pulse all measurements and movements will happen
automatically.

4.5. Additional features 83

mDrive User Manual, Release 3.1.2

4.5.5.2 Connection

The controller is supplied with two TTL-sync channels on the DVI-I connector.

4.5.5.3 Sync in

Syncronization input has a setting, which defines minimum syncin pulse length which may be registered. This length
is measured in microseconds. Use this setting to decrease controller sensitivity to noise. Synchronization input may be
turned on or off. If it is on, then a sync in pulse will lead to a situation as if Predefined displacement mode command
has taken place, which takes its Position and Speed from syncin settings. If syncin settings are changed during the
time the movement takes place it will not change current movement parameters. Movement parameters will change
on the next front on syncronization input. This designed deliberately to allow one to set up next shift parameters in
multiaxis systems during movement.

Warning: When you turn on or reboot the controller at the input voltage level of the synchronize input is present,
which is considered to be active, the controller interprets it as if Predefined displacement mode command has taken
place.

Note: Position and Speed are two separate variables which also may be saved in non-volatilve controller memory.
They are used only with synchronization input.

Note: Syncin movement obeys acceleration, max speed settings and all other settings which are related to motion.
Their incorrect setting may disrupt coordinated movement in multiaxis system.

Fig. 4.31: Movement starts becase input pulse is longer than debounce time

4.5. Additional features 84

mDrive User Manual, Release 3.1.2

Fig. 4.32: Movement does not start because input pulses are shorter than debounce time

Warning: If a second syncin pulse is received while controller is still moving then the end position will be offset
by two times the shift distance from the start, if a third pulse is received, then by three times, etc.

Fig. 4.33: One-time movement with double shift length because second syncin pulse came in before the end of the
movement

4.5. Additional features 85

mDrive User Manual, Release 3.1.2

Fig. 4.34: Two separate shifts with two start and two stop phases

Default setting is active state is one, movement on raising edge. Synchronization input may be inverted to the active
state is zero, movement on trailing edge.

Note: Inverted synchronization input setting will lead to the change in the definition of active/inactive state which
may be seen, for example, in controller status. However, programmatical inversion of the syncin state by itself will
not lead to the start of the movement, even if the transition happened into the active state.

4.5.5.4 Sync out

Output synchronization is used to control external devices tied to controller movement events. Sync out pulse can be
emitted on start and/or stop of the movement, and/or on each shift on the preset distance. ImpulseTime setting defines
the length of sync pulse, either in microseconds or in distance units. Synchronization output can be switched into
general purpose digital output mode. In this mode it is possible to set zero/one output logic level programmatically.

4.5. Additional features 86

mDrive User Manual, Release 3.1.2

Fig. 4.35: Sync out pulses generated on start and stop of the movement (fixed length pulse)

Note: If syncout pulse length is measured in distance units and, for example, is equal to 10 stepper motor steps and
“syncout pulse on stop” mode is active, then the active state on synchronization output will be set on the movement
end, but will be cleared only when the motor will move 10 more steps during the next movement.

Fig. 4.36: Syncout pulses generated on start and stop of the movement (pulse is measured in distance units)

Note: If you wish to reconfigure synchronization output and are not sure which state is it in, change its state to general
purpose output and set the desired logic level.

4.5. Additional features 87

mDrive User Manual, Release 3.1.2

Fig. 4.37: Sync out pulses on movement with acceleration and “generate on shift” mode (pulse length measured in
distance units)

Fig. 4.38: Sync out pulses on movement with acceleration and “generate on shift” mode (pulse length measured in
microseconds)

Note: Periodic syncout pulse generation imitates revolution sensor with reducing gear. Coordinates which trigger
syncout pulse generation are counted from zero position and not from the position the controller is in at the start of
the movement. For example, if synchronization output is set up to generate pulses every 1000 steps then pulses will
be generated in positions 0, 1000, 2000, 3000, etc. Pulse generation works when moving in both directions. Pulse
is generated when the quotient of current coordinate and pulse generation period changes. That is, pulse is generated
when position 1000 is reached when moving in the direction of increasing position and it is generated when position

4.5. Additional features 88

mDrive User Manual, Release 3.1.2

1000 is left when moving in the direction of decreasing position. Also, syncout pulse is always generated when
position 0 is reached from any direction (including the case when position is reset by the ZERO button).

Note: Whenever syncout pulses overlap they are merged into one pulse.

Fig. 4.39: Syncout pulse merge illustrated, pulse generation on start, stop and shift on offset (pulse length measured
in microseconds)

The controller will set virtual marks with a specified step that corresponds to the value of the “Every” field starting
from zero. The synchronization pulse is always generated after passing the next mark. Therefore, the position of the
pulses depends on the direction of movement:

• When moving in a positive direction (position increases, pulses are generated in the direction of movement),
that is, they grade the position of the mark

• When moving in a negative direction (position decreases, pulses are generated in the direction of movement),
that is, they are smaller than the position of the mark

Example: Pulse width: 100 Every flag: 1000 The controller will set virtual marks: . . . , -2000, 1000, 0, 1000, 2000,
. . .

• When moving from -1500 to 1500, the output will be a logical unit when passing the following coordinate
ranges: [-1000, -900], [0, 100], [1000, 1100]

• When moving in the opposite direction from 1500 to -1500 logical unit when passing the following coordinate
ranges: [1000, 900], [0, -100], [-1000, -1100]

4.5. Additional features 89

mDrive User Manual, Release 3.1.2

Important: With short movements within the pulse duration around the mark, the output state may not return to zero,
so as not to create unnecessary noise switching. The “Every” flag was not designed for single shifts, it was created to
generate pulses over long distances

Synchronization settings setup in mDrive Direct Control is described in Synchronization settings section.

4.5.5.5 Connection diagram

mDrive contains two TTL-channels of synchronization on the DVI-I connector.

Fig. 4.40: Scheme of connection to the synchronization channels for the controller

4.5.6 Multiaxis system design
Controller axes in multiaxis systems are identified by the controller board serial number. Each controller has its own
unique serial number, which may be seen in mDrive Direct Control software on About controller page. One can read
controller serial number using get_serial_number function (see Programming guide).

4.5.7 General purpose digital input-output (EXTIO)
Digital input and output are located on DVI-I connector. Logical level one is considered to be active (see Input
parameters table). However it can be inverted so that logical level zero is considered active.

4.5. Additional features 90

mDrive User Manual, Release 3.1.2

Table 4.6: Input parameters
Type TTL
Logic zero level 0 V
Logic one level 5-24 V

In input mode you can get information about logical level on input (see Controller status), or initiate the following
actions during transfer to active state (or during transfer to non-active state if the input is inverted):

• Perform Command STOP (quick stop).

• Perform Command PWOF command (windings power supply switch off).

• Perform Command MOVR command (shift to the given distance with last used settings).

• Perform Command HOME command (automatic position calibration).

• Enter Alarm state (turn off H-bridges and wait reinitialization).

It does not matter how the state of the input becomes active (after changing the invert states, or when changing the
voltage level). The controller uses a software debounce the input. Initiating the action takes place only when the active
state of the input buttons lasted for more than 3 ms.

Warning: When you turn on or reboot the controller at the input voltage level of the input is present, which is
considered to be active, the controller interprets it as a signal to trigger any of the actions.

Note: Digital input has weak pull down to the ground.

In output mode it is possible to set active or inactive logic level on the following events:

• EXTIO_SETUP_MODE_OUT_MOVING – Active state during motor movement.

• EXTIO_SETUP_MODE_OUT_ALARM – Active state when controller is in Alarm state.

• EXTIO_SETUP_MODE_OUT_MOTOR_ON – Active state while power is supplied to the motor windings.

• EXTIO_SETUP_MODE_OUT_MOTOR_FOUND – Active state while motor is connected.

Table 4.7: Output technical characteristic
Logic type TTL 5-24 V
Update frequency 1 kHz
Nominal current 5 mA

4.5.7.1 Connection diagram

Digital input and output are located on the DVI-I connector

Fig. 4.41: Scheme of connection to digital input/output for the mDrive

4.5. Additional features 91

mDrive User Manual, Release 3.1.2

4.5.8 General purpose analog input
Analog input may be used for other purpose. For example, it can be used to measure any external signal. Value at the
analog input may be read by the GETC command and is visible in the mDrive Direct Control charts.

This controller represents analog input values as a number in 0..10000 range. Analog input pin is located on DVI-I
connector.

Important: Analog input voltage should not go outside of 0-3.3 V range. If this voltage is exceeded errors in analog
input and other controller subsystems are possible! This may also damage the controller or connected motor.

Table 4.8: Input parameters.
Signal voltage 0-3.3 V
Scanning frequency 1 kHz

4.5.8.1 Connection diagram

4.5.8.1.1 One-axis and multi-axes systems

For the one-axis and multi-axes systems analog input contact is located on the DVI-I connector.

Fig. 4.42: Scheme of connection to analog input for the mDrive systems

4.5.9 Saving the position in FRAM memory
Controller has a function which automatically remembers its last position. This allows one to power-off the controller
after it has stopped. On the next power-on the controller will appear in the same motor position, logical position and
encoder value. This will work if during the time controller was off the motor shaft was not rotated by external means.

Note: For this function to work one should wait at least 0.5 seconds after the stop before cutting the power. Position
is saved even if the controller was powered off during movement, however in this case its saved position will not be
exact and a new calibration will be needed.

4.6 Secondary features

4.6.1 Zero position adjustment
Controller supports setting of zero position. This function should be used for anchor marked stages, so that anchor
position matches logical zero. Also, this function is convenient to use in case there is a single chosen physical position.

To set zero position a special command is used. This will zero step/microstep position and encoder count values.
Setting of zero position happens simultaneously for all position counters and will not lead to their desynchronization.
Current movement command is not affected. If controller was moving to some physical position when logical position

4.6. Secondary features 92

mDrive User Manual, Release 3.1.2

was reset to zero by this command then the movement will still end in that physical position. For example, if the
controller moved towards logical position 1000 and set zero position command was sent when it was passing 200, then
logical position counter will be decremented by 200 and movement will end in logical position 800.

Note: Setting of zero position when using shift on offset (see Predefined displacement mode) will not change target
physical position. Next shift will happen towards the same physical position which would have happened without zero
position command.

4.6.2 User-defined position adjustment
A SPOS command can be used if it is necessary to set position and/or encoder value to some user-defined position
instead of zero. New step/microstep position and encoder count values are passed as parameters to this command. If
only one of these counters is needed one should use ignore flags to filter required fields.

This command is different from set zero command in that it doesn’t set target position used by MOVE and MOVR
commands to zero. During movement and stopping its behavior is the same. If you issue SPOS command during
movement the controller will end in the same physical position it would move to if this command was not sent.

4.6.3 Controller status
Controller tracks its own status and can transfer it in the status structure of the GETS command. Controller status
contains information about performed movement, its result, state of power supply, state of encoder, state of motor
windings, digital input-output states, numeric information about position and powering voltage and currents and also
error flags.

4.6.3.1 Movement status

MoveSts contains:

• Movement flag which is set when controller changes motor position.

• Target speed reached flag which is set if current speed is equal to the speed controller should be moving with.

• Backlash compensation flag, which is set during backlash compensation in the final stage of the movement (see
Backlash compensation).

MvCmdSts contains information about the command being executed. All motor movements are initiated by movement
commands to the MOVE target position, MOVR shift relative to the last target position, RIGT movement to the right,
LEFT movement to the left, smooth stop SSTP or fast stop STOP, HOME home position calibration and LOFT forced
backlash compensation. Control by buttons, joystick, sync in pulses, etc. is also performed by these commands. For
example, joystick calls right and left movement commands during deflection or smooth stop command in central po-
sition (see Joystick control). Current movement command or last command and command status (running/completed)
are located in MvCmdSts variable. If the command is completed then another bit shows its result (successful or
not). Unsuccessfully completed command means controller could not reach desired position or backlash compensa-
tion could not be performed. The reason for this can be a sudden stop due to limit switches or Alarm state. Initial state
of this field contains unknown command and successful completion status.

4.6.3.2 Motor power supply status

PWRSts contains information about supply voltage. Windings’ status can be:

• Disabled (in this case no voltage is applied).

• Powered by reduced current relative to nominal current (for example if winding current reduction option is
used).

• Powered by nominal current.

4.6. Secondary features 93

mDrive User Manual, Release 3.1.2

• Powered by an voltage insufficient to reach nominal current in the windings.

Last status frequently appears with high rotation speeds, because for higher step switching speed one needs higher
voltage to ensure current rise in motor winding inductance. Insufficient voltage does not mean the motor won’t move,
it will merely emit excess noise and its torque will drop (see Power control).

4.6.3.3 Encoder status

EncSts contains information about connected encoder if feedback is disabled (for example for stepper motors). En-
coder state can be one of the following:

• Not connected.

• Unknown state, when there is not enough data to define encoder state.

• Connected and working.

• Connected and reversed, in this case it is necessary to enable reverse in encoder settings.

• Connected and defective.

The last state is realized when switch signals come to encoder inputs but they don’t correspond to the motor rotor
movement. State change happens after sufficient statistical data is collected. That’s why detection doesn’t happen
immediately. It is also impossible to define encoder status without movement (see Operation with encoders).

4.6.3.4 Motor windings status

WindSts contains information about windings state. State of each of the two windings is shown separately. They can
be:

• Disconnected from controller.

• Connected.

• Short-circuited.

• In an unknown state.

A state with very small resistance and inductance is considered to be a short-circuit. A state with very high load
resistance is considered to be disconnected.

4.6.3.5 Position status

All data about stage position and speed is reflected in status structure. Fields of primary position (CurPosition, uStep),
secondary position (EncPosition), speeds (CurSpeed, uCurSpeed) are used for this. Primary position is counted in
steps and microsteps of stepper motor if control without feedback is used. In case of leading encoder mode encoder
counts are stored in CurPosition and uStep contains 0. Secondary position contains encoder coordinate if no feedback
is used for stepper motor and contains steps if a stepper motor with encoder feedback is used. Speed is always
displayed for the primary position and is measured in the same units as the current set speed.

4.6.3.6 Controller power supply status and temperature

Status structure reflects:

• Power current (in mA)

• Power voltage (in tens of mV)

• USB current (in mA)

• USB voltage (in tens of mV)

• Microprocessor temperature (tenths of degrees Celsius)

4.6. Secondary features 94

mDrive User Manual, Release 3.1.2

4.6.3.7 Status flags

There are several types of flags: control command error flags, critical parameter flags, general error flags and state
flags.

Note: Many flags do not remove themselves and should be reset by the STOP command.

Protocol command errors:

• errc – Unknown protocol command. This error should not appear if the used software corresponds to the used
controller protocol version. Flag can’t be removed by itself.

• errd – Data integrity command check code is incorrect. This error appears in case of data transfer failure. The
flag can’t be removed by itself.

• errv – One or more values sent in the command could not be applied. It appears when command was received
and successfully recognized but transferred data were incorrect or out of range. This error can also mean
that necessary operation is impossible because of hardware failure. For example, this error appears if you set
microstep mode which is not in supported list or if you set zero steps per motor revolution. The flag can’t be
removed by itself. Critical parameter exceeded errors:

• Flag which means that controller is in Alarm state.

• Flag which means that power driver gives overheat signal. The flag is removed by itself depending on critical
parameters settings.

• Flag which means that microprocessor temperature is out of acceptable range. The flag is removed by itself
depending on critical parameters settings.

• Flag which means that power supply exceeded acceptable value. The flag is removed by itself depending on
critical parameters settings.

• Flag which means that power supply voltage is lower than acceptable value. The flag is removed by itself
depending on critical parameters settings.

• Flag which means that current drawn from the power unit exceeded acceptable value. The flag is removed by
itself depending on critical parameters settings.

• Flag which means that USB voltage exceeded acceptable value. The flag is removed by itlsef depending on
critical parameters settings.

• Flag which means that USB voltage is under acceptable value. The flag is removed by itself depending on
critical parameters settings.

• Flag which means that current drawn from the USB exceeded acceptable value. The flag is removed by itself
depending on critical parameters settings.

• Flag which means that limit switches are mixed up. The flag can’t be removed by itself.

General error flag:

• Flag which means that position control system detected steps counter and position sensor desynchronization.
The flag can’t be removed by itself (except the case of using position correction).

State flag:

• Presence of external power supply. Otherwise power supply is internal. Is always set.

4.6.3.8 Digital signals status

Controller reflects input and output digital signal status as active state flags or as current logical level. Active state
corresponds to one or to zero depending on specific block settings, for example on inverting settings. Flags can be:

4.6. Secondary features 95

mDrive User Manual, Release 3.1.2

• Right limit switch state (one if limit switch is active).

• Left limit switch state (one if limit switch is active).

• Right button state (one if button is pressed).

• Left button state (one if button is pressed).

• 1 if EXTIO pin operates as output. Otherwise - as input.

• EXTIO pin state (1 if state is active on input or on output).

• Hall A sensor state (1 if logical one is on input).

• Hall B sensor state (1 if logical one is on input).

• Hall C sensor state (1 if logical one is on input).

• Magnetic brake state (1 if power supply is applied to brake).

• Complete revolution sensor state (1 if sensor is active).

• Input synchronization pin state (1 if synchronization pin is in active state).

• Output synchronization pin state (1 if synchronization pin is in active state).

• Input encoder A channel state (1 if logical one is on input).

• Input encoder B channel state (1 if logical one is on input).

4.6.4 USB connection autorecovery
This unit is designed to reboot the USB in the event of loss of communication (for example, this may occur in the
event of electrostatic discharge or when the USB is disconnected without powering down the controller). The on/off
state of this unit is determined by the USB_BREAK_RECONNECT flag (see Critical parameters). If the unit is turned
on, it monitors the connection loss on the USB. In the case of communication loss on the USB after 500 ms the
firmware reconnects the device and then checks the state of the USB bus. If for a certain time there is no recovery
of connection (i.e. data communication), then this unti reconnects the USB again. Thus, in case USB connection
is not restored, the controller will continuously reconnect to the USB bus until connection is restored or until the
time between reconnection attempts exceeds 1 minute. So, in the case the USB is disconnected without powering
down the controller (for example, in the case of motor control with buttons or joystick) controller will remain in USB
reconnection mode for about 5 minutes.

Note: USB reconnection mode does not affect other controller functions (for example movement or winding current
maintenance) in any way.

To avoid simultaneous reconnect to the USB bus from both the controller and the computer side, the time between the
reconnections changes exponentially (see Time between USB reconnections).

Table 4.9: Time between USB reconnections
Restart number timeout, ms
0 (after communication is lost) 500
1 483
2 622
3 802
4 1034
5 1333
6 1718

4.6. Secondary features 96

mDrive User Manual, Release 3.1.2

The status of the unit can be determined by LED flashing frequency. In the case controller is in reconnection mode the
LED will flash with a frequency of 10 Hz (see Indication).

Warning: Because of the structure of the program unit, as well as USB bus specification, unit doesn’t guarantee
100% recovery of the communication with the computer after a static discharge.

mDrive Direct Control software also tries to reconnect to the controller when it is running. On connection loss, which
is defined as “result_nodevice” mDrive library call error, mDrive Direct Control waits for 1000 milliseconds, then
attempts to reopen device port. On Windows operating systems mDrive Direct Control uses WINAPI functions to
check if corresponding COM-port device is present. If it is, then after two unsuccessful attempts to reopen it calls
mDrive library ximc_fix_usbser_sys function, which resets the usbser.sys driver to fix the driver error. On Linux or
MacOS mDrive Direct Control simply tries to reopen the device every 1000 ms. After the device is opened mDrive
Direct Control sends several commands to read serial number, firmware version and controller settings which are
needed to set up user interface.

mDrive library considers device lost (return error code result_nodevice) on critical errors from system calls Read-
File/WriteFile (Windows OS) or read/write (Linux/Mac OS).

4.6. Secondary features 97

CHAPTER

FIVE

MDRIVE DIRECT CONTROL APPLICATION USER’S GUIDE

5.1 About mDrive Direct Control

mDrive Direct Control features a user-friendly graphical interface, which is designed for stages control, diagnostic
and fine tuning of the motors driven by the controllers. mDrive Direct Control allows quick adjustment of connected
stage by loading of previously prepared configuration files. The control process can be automated with script language
that can be used either directly or to speed up the process of customized control program development. mDrive
Direct Control supports multiaxial mode and multidimensional control scripts. It is possible to output the data about
controller and motor status in form of charts and save them to a file, or export tabular data for external processing.
The software is compatible with Windows XP SP3, Windows Vista, Windows 7, Windows 8, Windows 10, Windows
11, Linux, MacOS for intel and Apple Silicon (via Rosetta 2). Depending on the OS of your computer, appearance of
some windows may vary.

Here you can find the Quick Installation Guide for the application. This chapter provides a detailed manual for the
mDrive Direct Control software.

5.2 Main windows of the mDrive Direct Control application

5.2.1 mDrive Direct Control Start window
When started, mDrive Direct Control opens a controllers detection window. By means of mDrive library, mDrive
Direct Control queries controllers connected to the system and displays a list of found and successfully identified
controllers.

98

mDrive User Manual, Release 3.1.2

Fig. 5.1: mDrive Direct Control Start Window, 0 controllers found

Fig. 5.2: mDrive Direct Control Start Window, 1 real controller and 2 virtual controllers are displayed

The list of found controllers is displayed on the start screen. Here you can select one or more controllers and open
them using the Open selected button. If one controller is chosen, then mDrive Direct Control Main window in single-
axis control mode will be opened, if more than one controller is chosen the mDrive Direct Control Main window in
multi-axis control mode window will be opened. You could repeat the search by clicking the Rescan button or exit
the program by clicking Exit. If the Open last button is active it means that all the controllers that had been opened
in the previous run of mDrive Direct Control were found. Clicking the Open last button will then open the last saved
configuration.

5.2. Main windows of the mDrive Direct Control application 99

mDrive User Manual, Release 3.1.2

mDrive Direct Control can work with virtual controllers, which support the request-response protocol of a real con-
troller. Virtual controllers may be useful for testing and getting used to the mDrive Direct Control interface, if no real
hardware controllers are connected to the system.

The Settings button opens the new tab that contains the devices detection options.

Fig. 5.3: mDrive Direct Control Start Window, the settings tab

Device detection settings group includes device detection settings.

If Probe devices option is checked, at the start application tries to identify controllers by sending them commands
GETI and GSER.

If Enumerate non-mDrive devices option is checked the application queries all COM-port type devices in the system.
If the option is disabled, only devices with names matching the mDrive mask (“mDrive Motor Controller” in Windows;
/dev/mdrive* and /dev/ttyACM* in Linux/Mac) are queried.

If Enumerate network devices option is checked the application queries network-attached devices. A list of domain
names and/or IP addesses with mDrive server software is located below. One can add entries to the list manually or
use automatic detection by pressing Scan for local mDrive servers. Please note that in case of more than one local
server automatic scan will pick a random one and it will require several attempts to find them all.

Warning: If both Probe devices and Enumerate non-mDrive devices options are enabled, on startup mDrive
Direct Control will send data to all COM-ports. If the PC has multiple Bluetooth COM-ports, due to the nature of
Bluetooth operation, the queries will be conducted sequentially, and connection attempts may take from a few to
tens of seconds each.

The Virtual devices field contains the number of virtual controllers which will appear in the list of available controllers
after you press the Rescan button or restart the mDrive Direct Control.

Note: Note: Since the mDrive library opens mDrive devices in the exclusive access mode, when you start subsequent
copies of mDrive Direct Control application, only free controllers will be found and available for selection.

User management panel provides Access Control List management for local and remote servers. This feature enables
the end user to selectively grant permisions to connect and control remote mDrive devices. In order to grant permission

5.2. Main windows of the mDrive Direct Control application 100

mDrive User Manual, Release 3.1.2

you need to create the same user with the same password locally and remotely. Deleting the user (either locally
or remotely) revokes permission. By default all mDrive, SDK libraries and mDrive Direct Control have root user
preinstalled with default password.

5.2.2 mDrive Direct Control Main window in single-axis control mode

• Motion Control Unit

– Movement without specifying the final position

– Movement to the target point

– Target position for motion commands

• Controller and motor status

– Controller Power Supply

– Motor status

– Program status

• Group of application control buttons

• Status bar

5.2. Main windows of the mDrive Direct Control application 101

mDrive User Manual, Release 3.1.2

Fig. 5.4: mDrive Direct Control Main Window in General Motor mode

In the left part of the window in Power and Motor groups of parameters status of the controller and the motor is
available. In the central part of the window there is the Control group, containing the elements of motor motion
control. On the right there is a group of buttons to control the application as a whole. At the bottom there is a log,
which is hidden as the window is resized to its minimum size and a status bar. Below we consider these groups in
more detail.

5.2. Main windows of the mDrive Direct Control application 102

mDrive User Manual, Release 3.1.2

5.2.2.1 Motion Control Unit

Fig. 5.5: Control Unit

The current position indicator is located in the central part of the block. Below it are the motion control buttons. Even
lower, if the encoder is turned on, there is an indicator of the position of the encoder. In the closed loop mode (see
Operation with encoders section) the main and secondary indicators swap their places.

Below is the Control unit, containing the elements of motor motion control. Let us examine them in greater detail:

5.2.2.1.1 Movement without specifying the final position

Fig. 5.6: Movement control buttons

• The buttons Left, Stop and Right trigger movement to the left without specifying the final position, stop with
deceleration any previously started movement, and start the movement to the right without specifying the final
position, respectively.

• Button Left to the border will make the motor rotate to the left border of the slider. Right to the border, respec-
tively, will do it to the right edge of the slider.

• When you press and hold the keyboard buttons Right or Left and the slider block has input focus, the movement
starts in the direction of increasing or decreasing coordinate. When you release the button the movement stop
as if the Stop button on the main window have been pressed.

5.2. Main windows of the mDrive Direct Control application 103

mDrive User Manual, Release 3.1.2

5.2.2.1.2 Movement to the target point

Fig. 5.7: Movement control to the given point

• Move to button starts the process of moving to the given position.

• Shift on button starts the process of shift to a given distance from the target position.

5.2.2.1.3 Target position for motion commands

Commands Move to and Shift on use the target position to calculate the movement. The target position is changed by
the following commands:

Move to <value>
Target position = <value>

Shift on <offset>
Target position = target position + <offset>

Zero (provided there is no movement at the moment of sending the command)
Target position = 0

Commands Stop, Left, Right, Left up to the border and Right up to the border do not alter the target position.

5.2.2.2 Controller and motor status

5.2.2.2.1 Controller Power Supply

Power group of parameters contains the following indicators:

• Power voltage - voltage supplied to the power module.

• Power current - current consumption of the power module.

• Temp. - Temperature of the controller processor.

5.2. Main windows of the mDrive Direct Control application 104

mDrive User Manual, Release 3.1.2

If the color of the indicator Power voltage changes to red, it shows that voltage power supply exceeds the allowed value
range over the acceptable value. In this case, the controller switches to Alarm state. You can change this parameter in
the section Critical board ratings.

A horizontal bar above the field Power voltage indicates that the power voltage exceeds the motor max voltage, you
can change this parameter in the section Settings of kinematics (BLDC motor).

If color of the indicator Power current turns red, it shows that the current consumed by the controller from the power
supply is over the acceptable value. In this case, the controller switches to Alarm state. You can change this parameter
in the section Critical board ratings.

A horizontal bar above the field Power current indicates that the power current exceeds the motor max current, you
can change this parameter in the section Settings of kinematics (BLDC motor).

If the color of the indicator Temp turns red, it shows that the temperature of the controller board exceeds the acceptable
value. In this case, the controller switches to Alarm state. You can change this parameter in the section Critical board
ratings.

Important: It is possible to quit the Alarm state after terminating of the events that caused Alarm, provided that the
flag Sticky Alarm is not set. If the flag Sticky Alarm is on, use the Stop button to quit the Alarm state.

5.2.2.2.2 Motor status

Motor group of parameters contains the following indicators:

• Speed - rotation speed of the motor.

• Command - the last performing (bold font) or executed (plain font) controller command. Controller command
appears in black if the flag of the motion error MVCMD_ERROR is not set, in red otherwise. Can be one of the
following options:

– Move to position - move to the set position

– Shift on offset - offset for a predetermined distance

– Move left - move left

– Move right - move right

– Stop - stop

– Homing - find the home position

– Loft - backlash compensation

– Soft stop - smooth stop

– Unknown - unknown command (it may appear immediately after the controller starts)

• Power - state of stepper motor power supply. Can be one of the following options:

– Off - motor winding is disconnected and not controlled by the driver,

– Short - winding is short-circuited through the driver,

– Norm - winding is powered with nominal current,

– Reduc - winding is deliberately powered with reduced current relatively to operational one to reduce the
power consumption,

– Max - winding is powered with maximum available current, which a scheme with a given voltage supply
can output.

5.2. Main windows of the mDrive Direct Control application 105

mDrive User Manual, Release 3.1.2

Note: You can use the GPIO flag to detect the connected stage

A horizontal bar above the Speed parameter indicates that the speed has reached the maximum speed, which is defined
in the Settings of kinematics (BLDC motor).

5.2.2.2.3 Program status

Program group of parameters contains the following indicators:

• Sync buf free - free slots in the syncin command buffer.

5.2.2.3 Group of application control buttons

• Settings. . . button opens controller settings, see Application settings.

• Charts. . . button opens a window with charts, see Charts.

• Scripts. . . button opens scripting window, see Scripts.

• Home button searches for the home position, see Home position settings.

• Zero button resets the current position of the motor and the encoder value.

• Stop button sends the command of immediate stop, resets the Alarm state, clears the command buffer for syn-
chronous motion and stops a script if it is running.

• Cyclic button turns on the cyclic motion, see Cyclical motion settings.

Note: The Cyclic command is a constituent command: when invoking Cyclic in mDrive Direct Control at the
controller level the sequence of Move to commands is executed.

• Clear log button clears the contents of the log.

• Save log button saves the contents of the log to a file in CSV format (opens a file selection dialog window).

• Tech. support button gives the opportunity to quickly contact us.

• Exit button performs safe shutdown, see Correct shutdown.

5.2.2.4 Status bar

Status bar contains current controller status indicators. From left to right these are 7 flags:

• L - Left button state

• R - Right button state

• G - State of external GPIO pin

• B - State of brake pin

• S - State or revolution sensor pin

• I - State of sync in pin

• O - State of sync out pin

and separate indicators (flags)

• HOMD - Lights up after successful execution of home() command meaning that relative position scale is cali-
brated against a hardware absolute position sensor like a limit switch. Drops after loss of calibration like harsh
stop and possibly skipped steps.

5.2. Main windows of the mDrive Direct Control application 106

https://en.wikipedia.org/wiki/CSV

mDrive User Manual, Release 3.1.2

• WndA/WndB has 1 of 4 statuses: - Winding A/B is disconnected. - Winding A/B state is unknown. - Winding
A/B is short-circuited. - Winding A/B is connected and working properly.

Important: Status is determined using statistical data while moving, taking its time, and turning this status rather
useless in common applications. Therefore this function have been disabled for the moment.

• ENCD - Encoder state has 1 of 5 statuses: - Encoder is absent. - Encoder state is unknown. - Encoder is
connected and malfunctioning. - Encoder is connected and operational but counts in other direction. - Encoder
is connected and working properly.

• PWHT - Power driver overheat. Motor control is disabled until some cooldown. This should not happen
in boxed versions of controller. This may happen in bare board version of controller with a custom radiator.
Redesign your radiator then.

• SLIP - Motor slip detected. Flag is set when encoder position and step position are too far apart. You can
disable the “Position control” flag or increase the error in the “threshold” field on the mDrive Direct Control
Settings->Position control tab to stop these error from happening.

• WRM - Lights up when there is a substantial difference between stepper motor windings resistances. This
usually happens with a damaged stepper motor with partially short-circuited windings. You can diagnose the
problem according to the instructions in our manual

Important: The WRM algorithm was not originally designed to be used for belt-driven stages due to the fact that
the belt can stretch and vibrate. Vibration usually occurs at high speeds, which knocks down the work of the WRM
algorithm. For belt drive stages, this is normal behavior

• ENGR - Lights up red when the motor control error occurs. Motor control algorithm failure means that it can’t
define the correct decisions with the feedback data it receives. Single failure may be caused by mechanical
problem. A repeating failure can be caused by incorrect motor settings.

• EXTI - The error is caused by the external EXTIO input signal set to cause this error in the settings (mDrive
Direct Control Settings->EXTIO tab)

• ErrC - Command error encountered. The command received is not in the list of controller known commands.
Most possible reason is the outdated firmware that can be updated in mDrive Direct Control Settings->About
device tab->Autoupdate button.

• ErrD - Data integrity error encountered. The data inside command and its CRC code do not correspond,
therefore data can’t be considered valid. This error may be caused by EMI in RS-232 interface.

• ErrV - Value error encountered. The values in the command can’t be applied without correction because they
fall out the valid range. Corrected values were used instead of the orginal ones.

• Ctbl - Loading correction table status.

5.2.3 mDrive Direct Control Main window in multi-axis control mode

Important: mDrive Direct Control allows you to open up to 32 axes at the same time, but only the first 3 (X/Y/Z
axes) will be displayed in the multi-axis interface. However, it is possible to work with other open axes (those that
are not visually displayed in mDrive Direct Control), for this you need to use the mDrive Direct Control scripting
language. To visually work with a large number of axes (more than three), you will need to launch several mDrive
Direct Control windows. For example, you have a 5-axis controller, then in the first mDrive Direct Control window
you can open the first three axes, and in the second window the remaining two.

5.2. Main windows of the mDrive Direct Control application 107

mDrive User Manual, Release 3.1.2

Fig. 5.8: mDrive Direct Control Main window

In the top left part of the screen in the Position parameter group there are indicators of the current position. In the
bottom left part of the window there is the Joystick and Control blocks, which are a graphical control element for
several axes and a button block respectively. In the top right part, in the Motor blocks data on the current status of
controllers and connected motors is located. In the bottom right part of the window there is a group of buttons for
application control as a whole. Let us consider these groups in more detail.

5.2.3.1 Motion control block

Fig. 5.9: Motion control block

In the Current position column indicators of the current position in steps or calibrated units (see below) for the axes
X, Y and Z (from left to right) are located. The Move to button performs movement to the coordinate given by the
controls of its column, and the Shift on button performs shift on a specified distance from the current position. If one
of the controllers is temporarily absent or disabled, the corresponding line becomes grayed out.

5.2. Main windows of the mDrive Direct Control application 108

mDrive User Manual, Release 3.1.2

5.2.3.2 Virtual joystick block

Fig. 5.10: Virtual joystick block

In this block, the current coordinate of the controllers is visualized as a dot with two lines on the plane for X-Y axes
and the line for the Z axis.

There are several possible ways to control movement of the controllers:

• When you click anywhere on the X-Y plane or in the Z column, the corresponding controller or controllers start
to move to the selected coordinate in accordance to its own movement settings.

• When you press and hold the screen buttons with up, down, left and right arrows, the corresponding axis starts to
move in that direction. The movement stops with deceleration when you release the button (soft stop command
is sent).

• When you press and hold the keyboard buttons Right, Left, Up, Down, PageUp or PageDown when the joystick
block has input focus, the axis X, Y or Z, respectively, starts to move in the direction of increasing or decreasing
coordinate. The movement stops with deceleration when you release the button (soft stop command is sent). On
receiving input focus the widget background color changes from white to light-green.

The scales of the axes are set in Slider settings block on General motor tab in Settings window separately for each
controller. If user units are being used, then the corresponding axis scale is measured in these units. If the position
read from any controller is out of its axis range, then the corresponding indicator will not appear on the screen.

5.2. Main windows of the mDrive Direct Control application 109

mDrive User Manual, Release 3.1.2

5.2.3.3 Control block

Fig. 5.11: Control block

The Home button searches for the home position independently for each of the controllers; see Home position settings.

The Zero button resets the current position of the motor and value of the encoder for each controller.

The Soft stop button executes a soft stop for each of the controllers.

Note: The STOP button sends an immediate stop command to each controller, resets their Alarm statuses, clears their
command buffers for synchronous motion and stops a script if one is running.

The Log button opens a window with log information. Here you can find diagnostic information (errors, warnings,
informational messages) from mDrive Direct Control, mDrive library and script sources.

The Scripts button opens a scripting window, see Scripts.

5.2. Main windows of the mDrive Direct Control application 110

mDrive User Manual, Release 3.1.2

5.2.3.4 Block of status indicators for controllers and motors

Fig. 5.12: Block of status indicators for controllers and motors

Here are the three blocks of indicators of controllers and motors for axes X, Y and Z. In the title of the block the serial
number of corresponding controller is displayed. Each block contains the following indicators:

• Voltage - the voltage at the power section of the motor.

• Current - current power consumption of the motor.

• Speed - current speed of the motor.

• Command - the last command of the controller that was executed, or is being executed.

• Power - the state of the motor power supply.

The buttons Settings X, Y, Z open the configurations of a controller, which corresponds to this axis, see Application
settings.

5.2. Main windows of the mDrive Direct Control application 111

mDrive User Manual, Release 3.1.2

Below the indicator blocks Common settings and Exit buttons are located.

The Common settings button opens a dialog window with general settings. Here you can choose which controller
serial numbers are considered “X”, “Y” and “Z” axes, also this window contains logging settings.

The Exit button performs proper shutdown, see Correct shutdown.

Fig. 5.13: Common settings dialog window

Common settings window contains axis order settings, curve drawing options and logging settings.

You can reorder axes by choosing the axis serial, then pressing “up” or “down” buttons on the right.

First axis in the list, that is, an axis with serial number listed to the right of “X axis SN = ” label will be referred to as
“X axis”, the second one as “Y axis”, the third one, if it is available, as “Z axis”.

If you enter a greater than zero value of N seconds in the “curve erase delay” control in the “Drawing options”, then
last N seconds of X and Y axis controller motion will be displayed as a trajectory in 2D-space overlaid on the virtual
joystick window.

Common logging settings are completely identical to single-axis version logging settings.

5.2. Main windows of the mDrive Direct Control application 112

mDrive User Manual, Release 3.1.2

Here you can configure logging detail (“None” for no logging, “Error” to only log errors, “Error, Warning” to log
errors and warnings, “Error, Warning, Info” to log errors, warnings and informational messages) for each source:
mDrive Direct Control itself, mDrive library and Scripts module.

If the autosave option is enabled the log is saved to the file, which is flushed every 5 seconds. It has a name of type
“xilab_log_YYYY.MM.DD.csv”, where YYYY, MM and DD are current year, month and day respectively. The log
is saved in CSV format.

5.2.4 Application settings
Settings button from the main window opens the Settings window.

Fig. 5.14: mDrive Direct Control Settings Main Window

Application settings are presented as a hierarchical tree and are divided into three groups: controller settings - “De-
vice”, mDrive Direct Control application settings - “Program”, characteristics of a stage - “Stage”.

The first group Device contains the parameters that can be stored directly in the device (in the flash memory or in the
RAM of controller).

The second group Program contains the mDrive Direct Control application settings, which are not written into the
controller, and are used to control the mDrive Direct Control itself.

Important: The information on the “Stage” tab temporarily not used

Description of Load setting from flash and Save settings to flash buttons is located in the Saving the parameters in
the controller flash memory.

All application settings from the first two groups can be saved to an external file when you click Save settings to file.

When you click the Load setting from file. . . button you can pick a file with application settings to be loaded into
Settings window.

When you click the Compare two files button, a dialog window with file selection is opened. If you select two files
all their settings are compared and a list of differences is displayed. Missing keys in one of the files are marked in the

5.2. Main windows of the mDrive Direct Control application 113

https://en.wikipedia.org/wiki/Comma-separated_values

mDrive User Manual, Release 3.1.2

table as “<NO KEY>”.

The OK Button closes the Settings window and saves all changes to the settings to the controller. The Cancel button
closes the window without saving. The Apply button saves the settings without closing the window.

The Reset button resets all setting changes that were made since the Apply button was pressed, or after opening the
Settings, if the Apply button was not pressed.

Note: Only Device configuration settings can be saved into the flash memory of the controller.

5.2.5 Charts
Button Charts of the main window opens a window for working with charts.

5.2. Main windows of the mDrive Direct Control application 114

mDrive User Manual, Release 3.1.2

Fig. 5.15: mDrive Direct Control Charts window

5.2. Main windows of the mDrive Direct Control application 115

mDrive User Manual, Release 3.1.2

In the left part of the window there are Charts of variables, in the right side of the window there is the Control block,
which contains the charts control elements. Above the Control block there are flags which enable different charts,
below the Control block there is a group of buttons to control the stored charts data.

5.2.5.1 Values displayed on the charts

• Position is the primary field in which the current position is stored, no matter how feedback is arranged. In the
case of a BLDC-motor this field has the current position according to the encoder, in the case of a SM (stepping
motor) this field contains the current position in steps;

• Speed is the current speed;

• Encoder is the position according to the secondary position sensor;

• Power voltage is voltage of the power section;

• Power current is current consumption of the power section;

• USB voltage is voltage on the USB;

• USB current is current consumption by USB;

• Winding A current - in the case of stepper motor, the current in winding A; in the case of a BLDC motor, the
current in the first winding;

• Winding B current - in the case of stepper motor, the current in the winding B; in the case of BLDC motor, the
current in the second winding;

• Winding C current - in the case of a BLDC motor, the current in the third winding, unused in the case of stepper
motor;

• Winding A voltage - in the case of stepper motor, the voltage on winding A; in the case of a BLDC motor, the
voltage on the first winding;

• Winding B voltage - in the case of stepper motor, the voltage on the winding B; in the case of BLDC motor, the
voltage on the second winding;

• Winding C voltage - in the case of a BLDC motor, the voltage on the third winding, unused in the case of stepper
motor;

• Temperature is temperature of controller processor;

• Joystick is value of input signal from the joystick;

• Analog input is value of analog input;

• Flags shows the state of the controller flags.

5.2.5.2 Button functions

• Clear - clears the stored data and the Charts window;

• Start - starts recording the data and displaying charts. If the option “Break data update when motor stopped”
in Program -> Graph is turned on, no data recording and charts auto-scrolling will occur when the motor is
stopped;

• Stop - stops data reading;

• Save - stores chart data to a file;

• View - opens a new window where you can load (using the Load button) and view previously saved graphs.

• Export to CSV - exports chart data to CSV file

5.2. Main windows of the mDrive Direct Control application 116

https://en.wikipedia.org/wiki/CSV

mDrive User Manual, Release 3.1.2

5.2.5.3 Limit value

If a limit is set for speed, power voltage power current, this limitation is displayed on the graph in dotted lines:

Fig. 5.16: Speed chart in mDrive Direct Control program with speed limitation

5.2.6 Scripts
The “Scripts” button on the main window opens a window for working with scripts.

5.2. Main windows of the mDrive Direct Control application 117

mDrive User Manual, Release 3.1.2

Fig. 5.17: mDrive Direct Control scripting window

On the left side of the window a text edit field is located, on the right side of the window a Control block is located,
which contains control buttons.

5.2.6.1 Button functions

• Start - launches the script. The button is inactive if the script is already running. Right after the button is pressed
and before the script is interpreted the body of the script is autosaved to a temporary file (see below).

• Stop - stops the script. Inactive if the script is not running.

• Save - opens a file save dialog, prompting the user pick a file to save current script text to. Inactive if the script
is running.

• Load - opens a file load dialog, prompting the user to pick a file to load into the script window. Inactive if the
script is running. Warning! If you load a file all unsaved changes will be lost.

mDrive Direct Control loads last saved script text into the Scripting window on startup. Autosave runs on every script

5.2. Main windows of the mDrive Direct Control application 118

mDrive User Manual, Release 3.1.2

start and on mDrive Direct Control exit. Autosave file is named “scratch.txt” and is located in user settings directory.

Note: Stop button in mDrive Direct Control main window also stops script execution, acting as an emergency stop
button.

The STOP button sends an immediate stop command to each controller, resets their Alarm statuses, clears their com-
mand buffers for synchronous motion and stops a script if one is running.

Scripting language description is located in the Programming section of the manual.

5.2.7 mDrive Direct Control log

Fig. 5.18: mDrive Direct Control log window

5.2. Main windows of the mDrive Direct Control application 119

mDrive User Manual, Release 3.1.2

mDrive Direct Control log at the bottom part of the main window shows mDrive library messages. It also shows
messages from mDrive Direct Control application and Scripts interpreter.

Log has 4 columns: date and time of record, the source and the message text.

Messages have a logging level indicating message importance: error, warning and informational message. Error
messages are red, warnings are yellow and informational messages are green.

You can set a filter on displayed messages on the Log settings page in the Settings window.

5.3 Controller Settings

5.3.1 Settings of kinematics (stepper motor)
In the Application settings Device -> Stepper motor

5.3. Controller Settings 120

mDrive User Manual, Release 3.1.2

Fig. 5.19: Settings of stepper motor kinematics window

5.3. Controller Settings 121

mDrive User Manual, Release 3.1.2

5.3.1.1 Motor parameters - directly related to the electric motor settings

Revers - checking this flag associate the motor rotation direction with the position counting direction. Change the flag
if positive motor rotation decreases the value on the position counter. This flag effect is similar to the motor winding
reverse polarity.

Move with max speed - if this flag is checked motor ignores the preset speed and rotates at the maximum speed limit.

Limit speed with max speed - if this flag is checked the controller limits maximum speed to the value specified in the
Max nominal speed field. For example, if the speed exceeds the rated value, controller will reduce output action, until
the speed come back to the normal range. However, the controller remains operational and will continue the current
task.

Max nominal speed - motor rated speed.

Nominal current - motor rated current. The controller will limit the current with this value.

Current as RMS - if this flag is checked engine current value is interpreted as root mean square current value. If the
flag is unset, then engine current value is interpreted as maximum amplitude value. See Calculation of the nominal
current page for description

5.3.1.2 Motion setup - movement kinematics settings

Working speed - movement speed.

Backlash compensation - backlash compensation. Since the stage mechanics are not ideal there is a difference between
approaching a given point from the right and from the left. When the backlash compensation mode is on the stage
always approaches the point from one side. The preset value determines the number of steps which the stage takes
to pass a given point in order to come back to it from the same side. If the specified number is above zero the stage
always approaches the point from the right. If it is below zero the stage always approaches the point from the left.

Backlash compensation speed - speed of backlash compensation. When the backlash compensation mode Backlash
compensation is on the stage approaches the point from the right or from the left with a preset speed determined in the
number of steps per second.

Acceleration - enables the motion in acceleration mode, the numerical value of the field is the acceleration of move-
ment.

Deceleration - movement deceleration.

Steps per turn - determines the number of steps for one complete motor revolution. The parameter is set by user.

Microstep mode - step division mode. 9 modes are available: from a whole step to the 1/256 of a step. Description of
modes is in the Supported motor types.

5.3.1.3 Feedback settings

An encoder can be used as feedback sensor for stepper motors. Three feedback modes are available for stepper motors.

None - is without feedback. The movement is carried out in steps.

Encoder - mode of motion setting in the encoder reference values. The following encoder types are available: Single-
ended, Differential or Autodetect.

Encoder mediated - in this case, the movement is carried out in several iterations with position control at the end of
each iteration of the encoder.

Encoder counts per turn - this parameter defines the number of encoder pulses per one full motor axis revolution.

Encoder reverse - interpret encoder signal as if it were reversed.

5.3. Controller Settings 122

mDrive User Manual, Release 3.1.2

5.3.2 Motion range and limit switches
In the Application settings Device -> Borders

Fig. 5.20: Motion range and limit switches settings window

Borders setup parameter group contains borders and limit switches parameters. These parameters are used to keep
the stage in the permissible physical movement limits or motion range limit in accordance with the user requirements.
Borders can be set either by position (internal controller step counter) or by limit switches located in the stage terminal
points.

To set the borders by position select the By position and specify the Left border and Right border values, which
correspond to the left and right edge respectively.

5.3. Controller Settings 123

mDrive User Manual, Release 3.1.2

To set the borders by the limit switches select By limit switches and set up both Limit switch 1 and Limit switch 2.

Pushed position - sets the limit switch condition when it is reached: open or closed.

Border - sets the limit switch position: on the left or on the right of the stage working range.

Check the Stop at left border and / or Stop at right border for a forced stop of motor when the border is reached. In
this case the controller will ignore any commands of movement towards the limit switch if the corresponding limit
switch has already been reached.

When the border position is reached the corresponding indicator flashes in the main application window.

If the Border misset detection flag is checked, the engine stops upon reaching of each border. This setting is required
to prevent engine damage if limit switches appear to be potentially incorrectly configured. Read more about controller
operation in this mode in the limit switches location on stages.

5.3.3 Critical board ratings
In the Application settings Device -> Maximum ratings

5.3. Controller Settings 124

mDrive User Manual, Release 3.1.2

Fig. 5.21: Controller critical parameters settings window

Critical board ratings - This group is responsible for the maximum values of input current Max current (power) and
voltage Max voltage (power) on the controller, the maximum current Max current (usb) and voltage Max voltage (usb)
for USB, the minimum voltage Min voltage (usb) for USB, and the board temperature Temperature (if the temperature
is measured on the given controller version).

If the controller current consumption value, power supply voltage or the temperature goes out of the allowed range
defined here then the controller turns off all power outputs and switches to Alarm state. At the same time the Alarm
state information will appear in the main window (window background will change to red) and the out of range
parameter value will be displayed in blue or red (below or above the limit respectively).

If the Low voltage protection flag is checked the low voltage supply protection is active. Then Low voltage off and

5.3. Controller Settings 125

mDrive User Manual, Release 3.1.2

below values of input voltage turns the controller into Alarm state.

The group Misc includes all other critical parameters settings.

Switch off power driver on overheat (> 125 ° C) - this parameter enables the Alarm state in case of power driver
overheat.

Switch off power driver on H bridge alert - this parameter enables the Alarm state in case of the power driver malfunc-
tion signal.

Enter Alarm state when edge misset is detected - this parameter enables the Alarm state in case of incorrect boundary
detection (activation of right limit switch upon moving to the left, or vice versa).

Sticky Alarm flags - locking of Alarm condition. If the Sticky Alarm flags check-box is unchecked the controller
removes the Alarm flag as soon as it its cause is removed (e.g. in case of over-current the windings are disconnected,
which results in the decreased current). If the Sticky Alarm flags is enabled, the Alarm mode cause and the Alarm
mode are canceled by the Stop command only.

Reconnect USB on link break - if this option is enabled, then the controller will reset USB link if the connection breaks.

WRM Alarm - checking for errors related to misalignment of the motor windings.

Engine response Alarm - checking engine response errors to the control action.

5.3.4 Power consumption settings
In the Application settings Device -> Power Management

5.3. Controller Settings 126

mDrive User Manual, Release 3.1.2

Fig. 5.22: Power consumption settings window

• Current reduction enabled - activates the reduced energy consumption mode.

• Current in hold mode - it determines the current in the hold mode in % of the nominal value. Value range: 0 ..
100%.

• Current reduction delay - parameter determines the delay between switching to the STOP mode and power
reduction activation. It is measured in milliseconds. Value range: 0 .. 65535 ms.

• Power off when stop - it activates the function that deenergized the motor windings after switching to the STOP
state.

• Power off delay - parameter determines the delay in seconds between switching to the STOP mode and motor
power-off. Value range: 0 .. 65535.

5.3. Controller Settings 127

mDrive User Manual, Release 3.1.2

• Jerk free - activates the current smoothing function to eliminate the motor vibration.

• Current set time - parameter determines the time for jerk free current setting in milliseconds. Value range: 0 ..
65535 ms.

Detailed description of these parameters see in the Power control section.

5.3.5 Home position settings
In the Application settings Device -> Home position

Fig. 5.23: Home position settings window

Tab Home position sets the home position calibration parameters.

• 1st move direction - sets the movement direction for the motor to search for a stop signal (right or left) for
standard and fast homing algorithms.

5.3. Controller Settings 128

mDrive User Manual, Release 3.1.2

• 1st move speed - sets the speed for the first phase of the standard homing algorithm and the second phase of the
fast homing algorithms.

• Stop after - sets the source of the stop signal (limit switch, revolution sensor or external synchronization pulse).

• Use second phase of homing - this flag enables the accurate additional calibration of the home position (second
phase of the standard calibration algorithm).

• Blind half turn - when the flag is set the motor ignores the stop signal for the second phase of homing for half a
turn of the motor. This option allows to specify an unambiguous sequence of receiving stop signals for the first
and second phases of homing in the case when the sensors are located close enough to each other.

• 2nd move direction - sets the movement direction for the motor to search for a stop signal (right or left) for the
second phase of the standard homing algorithm.

• 2nd move speed - sets the speed for the second phase of the standard homing algorithm.

• Stop after (in the block of settings for the second phase of homing) - sets the source of the stop signal (limit
switch, revolution sensor or external synchronization pulse). The signal source may differ from that used for the
first phase of homing.

• Standoff - sets the distance for the final offset from the reference point. The direction of the offset is given by
the sign of the value of this distance (a positive standoff means an offset to the right, a negative standoff - to the
left).

• Use fast homing algorithm - this flag enables the fast homing algorithms to speed up the home calibration
procedure.

5.3.6 Synchronization settings
In the Application settings Device -> TTL sync

5.3. Controller Settings 129

mDrive User Manual, Release 3.1.2

Fig. 5.24: Synchronization settings window

Synchronization is described in details in TTL synchronization section.

Sync in:

• Clutter time - setting minimum synchronization pulse duration (in microseconds). Defines the minimum dura-
tion, which can be detected (anti-chatter).

• Enabled - check this box for the sync in mode enable.

• Invert - checked flag shows that the operation is triggered by the falling sync pulse edge.

• Absolute position - if the flag is checked, upon sync pulse the stage moves into the absolute position specified in
the field Step/Micro step. If the flag is unchecked, the shift is relative to the defined destination position.

5.3. Controller Settings 130

mDrive User Manual, Release 3.1.2

• Speed - the speed to use when moving.

Important: Using the sync input pulse synchronization, to instantly start moving, you need to disable the jerk free
flag, and it is also recommended to disable the power off when stop.

Sync out:

The Synchronization Output can be used as a “General purpose Output signal”.

• Enabled - if the flag is checked, the sync output functions according to the next settings. If the flag is unchecked,
the output value is fixed and equal to the Fixed state.

• Invert - if the flag is checked the zero logic level is set to active.

• Pulse width - specifies the duration of the output signal in microseconds or steps/encoder pulses.

• Fixed state - sets the logic level of output to 0 or 1, respectively.

• On start - synchronizing pulse is generated at the beginning of movement.

• On stop - synchronizing pulse is generated at the end of movement.

• Every - synchronizing pulse is generated every n encoder pulses.

• Accuracy - distance to the target position. As soon as the distance to target on approach is less than or equal to
this distance a synchronizing pulse will be generated if “on stop” option is used.

5.3.7 Brake settings
In the Application settings Device -> Brake control

5.3. Controller Settings 131

mDrive User Manual, Release 3.1.2

Fig. 5.25: Magnetic brake settings window

Check the Brake control flag to enable magnetic brake.

Parameters:

• Time between motor power on and brake off - time between switching the motor on and switching off the brake
(ms).

• Time between brake off and readiness to move - time between switching off the brake and motion readiness
(ms). All motion commands will be executed only after this time.

• Time between motor stop and brake on - time between stopping the motor and turning on the brake(ms).

• Time between brake on and motor power off - time between turning on the brake and motor power-off (ms).

5.3. Controller Settings 132

mDrive User Manual, Release 3.1.2

Value range is from 0 to 65535 ms.

• Motor power off enabled flag means that when magnetic brake is powered off, the brake turns off motor power
supply.

Configuration commands are described in Communication protocol specification.

5.3.8 Position control
In the Application settings Device -> Position control

Fig. 5.26: Window of Position control

Check the Position control checkbox to activate the position control.

5.3. Controller Settings 133

mDrive User Manual, Release 3.1.2

Base - selection of the position control device. You can select an encoder (see Operation with encoders) or revolution
sensor in the drop-down list.

Threshold - determines the number of missed steps (0 .. 255), which is considered to be an error. If the amount of
missed steps exceeds the specified number of steps the SLIP error flag is set. Further actions depend on the Error
action setting:

If Alarm on errors is active then the controller will enter Alarm state.

If Correct errors is active then the controller will try to correct slip error (see Steps loss detection).

If Ignore errors is active then the controller will do nothing.

Inverted revolution sensor - if the flag is checked the revolution sensor is triggered by the level 1. Unchecked flag
means usual logic is valid - 0 is the trigger/activation/active state.

Configuration commands are described in the Communication protocol specification.

Important:

• Feedback none: in this mode, “Position control” is useful and should be used. “Position control” compares the
position by the encoder/position sensor and recalculates it in steps. If there is a discrepancy between positions,
a moving indicator “SLIP” will light up in the bottom of mDrive Direct Control main window. In addition, if
“Alarm on errors” is marked, the controller will enter an alarm state.

• Feedback encoder: “Position control” does not need to be used because the position is strictly controlled by
the encoder.

• Feedback EMF: the algorithm should not be used with the “Position Control” flag enabled. For smooth running
in the EMF algorithm, a discrepancy between the actual position and the profile position is implemented. If
“Position Control” flag is enabled, false Alarms may be triggered.

• Feedback encoder mediated: it is not recommended to enable the “Position Control” flag. While driving, the
algorithm does not differ from the “none” mode, but when the engine arrives at a position, the actual position
is compared to the desired position on the encoder, after which the algorithm compensates for the discrepancy
in positions until the position on the encoder becomes desirable. Thus, if the “Position Control” flag is enabled,
the SLIP flag and Alarms can be triggered.

5.3.9 Settings of external control devices
In the Application settings Device -> Control

5.3. Controller Settings 134

mDrive User Manual, Release 3.1.2

Fig. 5.27: Settings of external control devices window

5.3. Controller Settings 135

mDrive User Manual, Release 3.1.2

Control mode - range of external motor control devices.

• Control disabled - external devices are not used

• Joystick - joystick is used

• Buttons - buttons are used

Important: In Joystick control mode, the physical and virtual buttons remain in working order

Joystick block contains joystick settings.

Low end, Center and High end determine the lower border, the middle and the upper border of joystick range respec-
tively. Hence the joystick ADC normalized value equal to or less than Low end corresponds to the maximum joystick
deflection towards lower values.

Exp factor - exponential nonlinearity parameter. See Joystick control.

Dead zone - dead zone of joystick deviation from the center position. Minimum step of variation: 0.1, the maximum
value is 25.5. The joystick deviation from Center position by less than Dead zone value corresponds to zero speed.

Reverse joystick - reverse the joystick effects. Joystick deviation to large values results in negative speed and vice
versa.

Button Joystick calibration opens calibration dialog box.

5.3. Controller Settings 136

mDrive User Manual, Release 3.1.2

Fig. 5.28: Dialog box of Joystick Calibration

Calibration is automatic border and the dead zone detection. Below is the process description:

Move the joystick to extremes to determine the borders. The range of all measured values is represented in a green
line.

Release the joystick and press the Start to initiate detection of the dead zone. Within 5 seconds imitate accidental
influences on the joystick, which should not be recognized as deviation from the joystick zero position. The dead zone
range is represented in red.

Pressing the Apply button will send the computed values into the Settings window. Pressing OK button will send the
values and close the calibration dialog box.

Left button and Right button blocks contain the settings of the physical buttons.

Pushed Position - determines the state (pressed or released button) which is considered the motion signal by the
controller.

• Open - released button is considered to be a motion command.

• Close - depressed button is considered to be a motion command.

Click settings block lets one to set up button “click” behaviour. A rapid press of a button is interpreted as a “click”.

5.3. Controller Settings 137

mDrive User Manual, Release 3.1.2

Max click time - maximum click time. Until this amount of time is elapsed controller will not start moving with first
speed (see below).

Delta - relative position offset. Controller will do a shift on offset with each click.

Speed settings block contains timeout and speed settings.

Timeout [i] - the time after which the speed switches from Speed[i] to Speed[i+1]. If any of the Timeout[i] is equal to
zero, no switching to the next speeds will occur.

Speed[i] - speed of the motor after time equal to Timeout[i-1]. If any of the speeds is equal to zero, no switching to
this and subsequent speeds will occur.

Configuration commands are described in Communication protocol specification.

5.3.10 General purpose input-output settings
In the Application settings Device -> EXTIO

5.3. Controller Settings 138

mDrive User Manual, Release 3.1.2

Fig. 5.29: General purpose input-output settings tab

For detailed information, please see General purpose digital input-output (EXTIO).

ExtIO setup

IO pin is output - if the flag is checked the needle of ExtIO works in output mode, otherwise - in the input mode.

Invert - if the flag is checked the rising edge is ignored and the falling edge is active.

ExtIO mode - mode selection

If ExtIO configured for input mode the choice of controller action settings by the input pulse is active:

• Do nothing - do nothing.

5.3. Controller Settings 139

mDrive User Manual, Release 3.1.2

• Stop on input - run Command STOP.

• Power off on input - run Command PWOF.

• Movr on input - run Command MOVR.

• Home on input - run Command HOME.

• Alarm on input - enter ALARM state.

If ExtIO configured for output mode the choice of the output state depending on the controller status is active:

• Out always off - always in inactive state.

• Out always on - always in active state.

• Out active when moving - in active state during motion.

• Out active in Alarm - in active state if the controller is in the Alarm state.

• Out active when motor is on - in active state if the motor windings are powered.

• Out active when motor is found - in active state if the motor is connected.

5.3.11 Motor type settings
In the Application settings Device -> Motor & Driver type

5.3. Controller Settings 140

mDrive User Manual, Release 3.1.2

Fig. 5.30: Motor type settings window

Stepper motor or BLDC-motor - motor type indication. Control power driver should be selected as well:

• Integrated. This type is used for this controller modification.

• Discrete FET driver. Will be used in future versions.

Warning: Driver type or motor type change is a critical operation that should not be performed while motor
rotates. To implement the change correctly the motor winding should be de-energized and turned off, after that
motor type can be changed and motor of another type can be connected. The same applies to changing of integrated
driver to external one and vice versa.

5.3. Controller Settings 141

mDrive User Manual, Release 3.1.2

Note: Available motor types are determined by your firmware upgrade. Available control drivers depend on the
controller board type, except for the external driver.

5.3.12 Settings of PID control loops
In the Application settings Device -> PID control

Fig. 5.31: Settings of PID control loops window

In this section, you can change the PID coefficients. A voltage PID is used, 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 coefficients can vary in
0..65535 range for BLDC motors.

5.3. Controller Settings 142

mDrive User Manual, Release 3.1.2

Fractional PID coefficients (on right) are only for BLDC motor.

Warning: Do not change the settings of PID controllers, if you are not sure you know what you are doing!

Configuration commands are described in the Communication protocol specification. PID tuning is described in detail
in the PID-algorithm for BLDC engine control section.

5.3.13 About controller
In the Application settings Device -> About device

Fig. 5.32: About device tab

5.3. Controller Settings 143

mDrive User Manual, Release 3.1.2

The Board section displays information about the controller:

• Serial number - device serial number.

• Hardware version - hardware version.

• Bootloader version - bootloader version.

• Firmware version - firmware version.

• Latest firmware - latest available firmware version for this device (downloaded from the internet if internet
connection is available).

• The Update from file button opens firmware update dialog box.

Select the firmware file with the .cod extension and click Open. mDrive Direct Control will start the firmware update
and will display “Please wait while firmware is updating”. Do not power off the controller during the upgrade. Upon
completion of the update the “Firmware updated successfully” dialog will be displayed.

The Choose Firmware button opens a dialog with firmware version numbers. Pick a number and press “Update
firmware” to update to selected version. An appropriate firmware file will be downloaded from the internet and loaded
into the controller. This feature requires an active internet connection.

The Autoupdate button automatically updates firmware from the internet to the latest available version.

Friendly name - an arbitrary user-defined name for the controller. If this string is not empty, then it will replace device
id and serial number in window titles. This is a convenience feature for situations with multiple controllers connected
to the same PC.

Information block contains information about the device: the manufacturer, device ID, device type. The data are read
from the internal memory of the controller.

All of this data is reported to the mDrive Direct Control application when the device is connected.

5.3.14 Settings of kinematics (BLDC motor)
In the Application settings Device -> BLDC Motor

5.3. Controller Settings 144

mDrive User Manual, Release 3.1.2

Fig. 5.33: Settings of kinematics (BLDC motor) window

5.3.14.1 Motor parameters - electric motor settings

Revers - checking this flag associate the motor rotation direction with the current position counting direction. Change
the status of the flag if positive motor rotation decreases the value on the position counter register. This flag effect is
similar to connecting the motor winding to reverse polarity.

Move with max speed - if this flag is checked motor ignores the preset speed and rotates at the maximum speed limit.

Limit speed with max speed - if this flag is checked the controller limits the maximum speed to the number of steps
per second, specified in the Max nominal speed field.

Max nominal speed, Max voltage - are motor nominal parameters. If they are active and applicable for given type of

5.3. Controller Settings 145

mDrive User Manual, Release 3.1.2

motor, the controller limits these parameters within the specified values. For example, if the motor speed and current
exceeds the nominal values, the controller will reduce output action until both values are within the normal range.
However, the controller remains in operational condition, and will execute the current task.

Important: “Max voltage” is the maximum voltage between any two terminals of the BLDC motor. At the same
time, the voltage at each terminal relative to the controller’s ground (this voltage is shown on the graphs “Winding A
Voltage”, “Winding B Voltage”) may exceed “Max voltage”.

Amplitude current - if this flag is checked engine current value is interpreted as maximum amplitude value. If the flag
is unset, then engine current value is interpreted as the current value calculated from the maximum heat dissipation.
See Calculation of the nominal current page for description

5.3.14.2 Motion setup - settings related to the movement kinematics

Working speed - movement speed.

Flag 1/1000 - allows you to work at ultra-low speeds. If the flag is enabled, the value from the “Working speed” field
will be divided by 1000.

Backlash compensation - backlash compensation. Since the stage mechanics are not ideal there is a difference between
approaching a given point from the right and from the left. When the backlash compensation mode is on the stage
always approaches the point from one side. The preset value determines the number of steps which the stage takes
to pass a given point in order to come back to it from the same side. If the specified number is above zero the stage
always approaches the point from the right. If it is below zero the stage always approaches the point from the left.

Backlash compensation speed - speed of backlash compensation. When the backlash compensation mode Backlash
compensation is on the stage approaches the point from the right or from the left with a preset speed determined in the
number of steps per second.

Acceleration - enables the motion in acceleration mode, the numerical value of the field is the acceleration of move-
ment.

Deceleration - movement deceleration.

Number of poles - number of poles per revolution.

5.3.14.3 Feedback settings

Encoder - use of encoder as a feedback sensor. The following encoder types are available: Single-ended, Differential
or Autodetect.

Encoder counts per turn - this parameter defines the number of encoder pulses per one motor axis full rotation.

Linear motor wizard - open dialog for setting linear stages parameters.

5.4 mDrive Direct Control application settings

5.4.1 General motor settings
In the Application settings Program -> Interface -> General motor

5.4. mDrive Direct Control application settings 146

mDrive User Manual, Release 3.1.2

Fig. 5.34: General motor settings tab

This tab configures the slider display settings and secondary position display settings for a general motor device. The
position slider is located in the main window and visually represents the stage current position relative to the borders.

Fig. 5.35: Fragment of Main application window containing slider

5.4. mDrive Direct Control application settings 147

mDrive User Manual, Release 3.1.2

Slider settings group contains the following slider settings:

Left slider bound and Right slider bound contain the coordinates of the left and right bounds of the slider respectively.

If Watch over ltimits is checked then upon moving out of the slider range, the scale shifts to display the current position.
However, he total distance displayed on the slider remains unchanged. This option is not used by default. It is useful
when you know the stage motion range, but do not know the relation of that position to the values displayed in mDrive
Direct Control, e.g. for the calibration purposes. The option is often used together with the settings of the tab Home
position settings.

Position settings group contains the position display settings.

If Show secondary position is checked then a secondary position is shown in the main application window.

5.4.2 Cyclical motion settings
In the Application settings Program -> Cyclic motion

5.4. mDrive Direct Control application settings 148

mDrive User Manual, Release 3.1.2

Fig. 5.36: Cyclic motion tab

Use this tab to configure the cyclic motion between two preset positions. It is used mainly for demonstration purposes.
This mode is activated by Cyclic button in the main window, and deactivated by Stop button in the main window.

Cyclic motion mode settings:

Border to border - cyclical motion between the borders configured in the Motion range and limit switches. The motion
begins towards the left edge.

Point to point - cyclical motion between points specified in the Point to point setup group. The stage moves to the left
point, stops, then moves to the right point, stops, and then the cycle repeats.

5.4. mDrive Direct Control application settings 149

mDrive User Manual, Release 3.1.2

5.4.3 Log settings
In the Application settings Program -> Log

Fig. 5.37: mDrive Direct Control log settings window

On this tab you can configure the logging detail level.

In Display messages by loglevel box you can choose an option to log nothing (None), log only errors (Error), errors
and warning messages (Error, Warning), errors, warnings and information messages (Error, Warning, Info) for each
source: mDrive Direct Control application, mDrive library and Scripts module.

If the Enable log autosave checkbox is checked then the log is saved into file. Directory where the log file will be
saved is set below. Log file is flushed to the disk every 5 seconds.

5.4. mDrive Direct Control application settings 150

mDrive User Manual, Release 3.1.2

File has a name of type “xilab_log_YYYY.MM.DD.csv”, where YYYY, MM and DD are current year, month and
day, respectively. Data is stored in CSV format. Messages that are saved into the log file are not filtered by logging
options.

5.4.4 Charts general settings
Program -> Graph in the Application settings

Fig. 5.38: Charts general settings tab

Visible interval - the time interval displayed in charts on the horizontal axis.

Update interval - chart data update interval.

5.4. mDrive Direct Control application settings 151

https://en.wikipedia.org/wiki/Comma-separated_values

mDrive User Manual, Release 3.1.2

Break data update when motor stopped - stops drawing charts when the motor stops. This option provides the possi-
bility to use the chart space more rationally, removing the areas when there is no motor motion.

Autostart charts on window open - starts displaying chart data automatically on window open. If you wish to start
charts update manually, then uncheck this option.

5.4.5 Charts customization
Individual chart display settings are set in the program settings windows Program -> Graph -> . . .

Charts display settings include line style and chart vertical axis scale adjustment.

For example, the Position tab:

Fig. 5.39: Charts customization on the example of the position chart tab

5.4. mDrive Direct Control application settings 152

mDrive User Manual, Release 3.1.2

Position curve setup group changes curve parameters. It includes the Line width, Color and Line style.

Scaling group changes curve display range on the vertical axis by setting values in Scale min and Scale max.

Checked Autoscale flag results in auto-scaling of the scale limits in accordance with the change limits of the variable
on the axis Y. In this case, the parameters Scale min and Scale max are ignored.

Antialiasing flag enables chart lines smoothing, which provides the possibility to achieve a higher-quality display, but
it slows a little the chart drawing process.

Similar graph display parameters can be set in the other tabs of the Graph section, such as Speed, Encoder, Flags,
Engine voltage and others.

5.4.6 User units settings
In the Application settings Program -> User units

5.4. mDrive Direct Control application settings 153

mDrive User Manual, Release 3.1.2

Fig. 5.40: User units tab

Use this tab to configure user units display. Used to replace internal controller coordinates with units familiar to the
user. This tab also allows you to use the coordinate correction table for user units. The coordinate correction table
allows you to significantly improve the positioning accuracy when using custom units.

5.4.6.1 User units

Enable user units - enables user unit display instead of steps (in case of stepper motor) or encoder counts (in case of
BLDC motor). User units replace steps(counts) only in the main mDrive Direct Control window and do not affect any
of the Settings pages.

Ratio - conversion of controller steps to position units, set as a ratio of two integer values “x steps = y user units”.

5.4. mDrive Direct Control application settings 154

mDrive User Manual, Release 3.1.2

Values “x”, “y” and unit name string are set by user.

Precision - displayed precision.

5.4.6.2 Coordinate correction table for more accurate positioning

Some functions for working with user units allow you to use the coordinate correction table for more precise position-
ing.

Load table - loads the coordinate correction table. If it is successfully loaded, the file name of the loaded table appears
to the right of the button. From this moment certain _calb functions that perform the re-count procedure of coordinates
using the correction table will proceed the recalculation, up to the clearance of the table with Clear table.

Clear table - clears the correction table. All _calb functions operate in a normal mode.

5.4.7 About the application
Program -> About in the Application settings

5.4. mDrive Direct Control application settings 155

mDrive User Manual, Release 3.1.2

Fig. 5.41: About tab

This section displays the mDrive Direct Control application version. It also contains a link to the page with the latest
Software version.

5.4. mDrive Direct Control application settings 156

https://files.mdrive.tech/ru/product/mDrive/

mDrive User Manual, Release 3.1.2

Fig. 5.42: User configuration file cleanup dialog

“Remove all custom configuration files” button displays a dialog prompt to delete all custom configuration files created
by mDrive Direct Control. Files to be deleted are located in mDrive Direct Control configuration directory. These files
are “settings.ini”, which stores common program settings, “SNnnn.cfg”, which store per-controller settings, “V_nnn”,
which store virtual controller internal states, “scratch.txt”, which stores last run script. Here “nnn” means any number.
Pressing OK in this dialog will delete all these files and close mDrive Direct Control, pressing Cancel will abort
deletion and close this dialog.

5.5 Correct shutdown

Correct shutdown assumes shutdown of the motor and saving the current position by the controller. The current
position is automatically saved, see Saving the position in FRAM memory.

Exit button performs correct shutdown and exit. When you click it the application sends a soft stop command to the
controller, and after the stop is complete, the application sends command of power-off. If execution of the soft stop
command was interrupted by an event like a motion command from the joystick or signal of TTL synchronization, or
if while sending of soft stop command or command of power off to the controller, the library returned an error, the
exit will be canceled. In this case you need to check joystick settings and settings of “right” and “left” buttons and
Synchronization settings.

5.6 mDrive Direct Control installation

5.6.1 Installation on Windows
Copy the installer program file to your computer. The installer file name is “mdrive_direct_control-<version_name>-
win32_win64.exe”. It automatically detects whether it is running on 32-bit or 64-bit version of Windows and installs
the appropriate version of mDrive Direct Control.

5.5. Correct shutdown 157

mDrive User Manual, Release 3.1.2

Run the installer and follow the on-screen instructions.

5.6. mDrive Direct Control installation 158

mDrive User Manual, Release 3.1.2

All the necessary software, packages and programs will be installed automatically.

Answer the question of the Windows security service Install to get the mDrive conroller driver.

Wait for the installation to complete.

5.6. mDrive Direct Control installation 159

mDrive User Manual, Release 3.1.2

After the installation is complete the mDrive Direct Control application will be started by default.

5.6. mDrive Direct Control installation 160

mDrive User Manual, Release 3.1.2

Connect the stage to the controller. Connect regulated power supply to the controller. Ground the controller or the
power supply unit. Connect the controller to the computer using a USB-A - USB-B cable. LED indicator on the
controller board will start to flash.

Wait until Windows detects the new device and click Rescan or run the mDrive Direct Control application again if it
was closed. The system will detect the connected controller and open the main mDrive Direct Control window.

5.6.2 Installation on Linux
mDrive Direct Control package for Linux is distributed in AppImage format - Linux file that contains an application
and everything the application needs to run (e.g., libraries, icons, fonts, translations, etc.) To run mDrive Direct
Control just download the application, make it executable, and run. No need to install. No system libraries or system
preferences are altered.

There are two main ways to make an AppImage executable:

1. With the GUI:

• Open your file manager and browse to the location of the AppImage;

• Right-click on the AppImage and click the “Properties” entry;

• Switch to the “Permissions” tab and click the “Allow executing file as program” checkbox if you are using a
Nautilus-based file manager (Files, Nemo, Caja), or click the “Is executable” checkbox if you are using Dolphin,
or change the “Execute” drop down list to “Anyone” if you are using PCManFM;

5.6. mDrive Direct Control installation 161

https://en.wikipedia.org/wiki/AppImage

mDrive User Manual, Release 3.1.2

• Close the dialog;

• Double-click on the AppImage file to run.

2. On the command line:

chmod a+x mdrive_direct_control-<version>-x86_64.AppImage
./mdrive_direct_control-<version>-x86_64.AppImage

On the first run mDrive Direct Control may not found the usb-connected controllers. To enumerate devices mDrive
Direct Control needs the available udev mapping. As a standalone AppImage application mDrive Direct Control
doesn’t have installation stage which can add the udev rules to the system. Click the No devices found? button on the
mDrive Direct Control start window then click Add udev rule file to the system.

5.6. mDrive Direct Control installation 162

mDrive User Manual, Release 3.1.2

Some Linux distributions do not add users to the “dialout” group by default. Membership in the “dialout” group is
required to be able to access serial-like devices. Since devices are represented as ttyACM USB-COM adapters mDrive
Direct Control needs this permission to work with XIMC devices. Click Add current user to the dialout group button
and restert your login session for the chage to take effect.

5.6. mDrive Direct Control installation 163

mDrive User Manual, Release 3.1.2

Important: mDrive Direct Control application requires X-server (graphic mode) for operation.

5.6. mDrive Direct Control installation 164

mDrive User Manual, Release 3.1.2

5.6.3 Installation on MacOS

Copy the file with the installer archive to your computer. The archive with the installation program is named
“mdrive_direct_control-<version_name>-osx64.tar.gz”.

5.6. mDrive Direct Control installation 165

mDrive User Manual, Release 3.1.2

Unpack the archive by a mouse click.

Make right button click on installer.pkg.

Choose “Open”.

5.6. mDrive Direct Control installation 166

mDrive User Manual, Release 3.1.2

Choose “Open”.

5.6. mDrive Direct Control installation 167

mDrive User Manual, Release 3.1.2

Select “Continue” in the main window of the installer.

5.6. mDrive Direct Control installation 168

mDrive User Manual, Release 3.1.2

Now select “Install.”

Enter the password.

5.6. mDrive Direct Control installation 169

mDrive User Manual, Release 3.1.2

Wait until the installation is complete.

Select the mDrive Direct Control application in the Programs block.

5.6. mDrive Direct Control installation 170

mDrive User Manual, Release 3.1.2

Start it.

5.6. mDrive Direct Control installation 171

CHAPTER

SIX

PROGRAMMING

6.1 Programming guide

6.1.1 Working with controller in Visual Studio
You can get an example of Visual Studio by email on request support@mdrive.tech.

Note: Testapp can be built using testapp.sln. Library must be compiled with MS Visual C++ too. Make sure that
Microsoft Visual C++ Redistributable Package 2013 is installed.

Open solution examples/testapp/testapp.sln, build and run from the IDE.

Extract the archive and run “testapp” program.

The command prompt opens. You will see a message: “Hello! I‘m a stupid test program!”

The program reports the version of the library used, as well as its bit depth. Also “testapp” program indicates which
port it holds.

After opening the device, the program reads the data fields from the “status_t” structure reference.

172

mailto:support@mdrive.tech

mDrive User Manual, Release 3.1.2

rpm int CurSpeed Motor shaft speed
pos float CurPosition Current position
upwr int Upwr Power supply voltage, tens of mV
ipwr int Ipwr Engine current
flags unsigned int Flags Status flags
mvsts unsigned int MvCmdSts Move command state

Function result_t XIMC_API get_device_information (device_t id, device_information_t *device information) - Return
device information

Function result_t XIMC_API get_engine_settings (device_t id, engine_settings_t *engine settings) - Read engine set-
tings

engine_settings_calb_t Struct Reference - result_t XIMC_API set_engine_settings_calb (device_t id, const en-
gine_settings_calb_t *engine_settings - calb, const calibration_t *calibration)

After, the testapp program executes the command “command_left” for 2 seconds. The “command_left” command is
successfully executed, the “command_stop” command is called.

Important: At the end of the program, the command “close_device” must be called.

The “testappeasy” program isn‘t so much different from the “testapp” program. Open solution exam-
ples/testappeasy/testappeasy.sln, build and run from the IDE.

The command prompt opens. You will see a message: “This is a ximc test program.”

The program reports the version of the library used.

Using the “open_device” command, “testappeasy” program opens the device in exclusive access mode.

Warning: mDrive library opens the controller in exclusive access mode. Any controller opened with mDrive
library (mDrive Direct Control also uses this library) needs to be closed before it may be used by another process.

6.1. Programming guide 173

mDrive User Manual, Release 3.1.2

After, the testappeasy program executes the command “command_left” for 3 seconds. The “command_left” command
is successfully executed, the “command_stop” command is called.

The comand “calibration.A = 0.1;” - Setting calibration constant to 0.1 (one controller step equals this many units)

The command “calibration.MicrostepMode = engine_settings.MicrostepMode;” - To set microstep mode to convert
microsteps to calibrated units correctly.

After the “testappeasy” program reads calibrated device status from a device.

At the end, a “command_stop” command is sent to the device. The “close_device” - closes the specified device.

6.1.2 A short description of the work with supported by programming languages

• Visual C++

• .NET (C#)

• Python

Library usage can be examinated from test application testapp. Non-C languages are supported because library sup-
ports stdcall calling convention and so can be used with a variety of languages.

C test project is located at “examples/testapp” directory, C# test project - at “xamples/testcs”, for Python - «exam-
ples/testpython». Development kit also contains precompiled examples: testapp as 32 and 64-bit applications for
Windows and 64-bit application for OSX, testcs - 32-bit only, testpython is runtime-interpreted. Also the pro-
gramming guide can be downloaded from this link.

Note: SDK requires Microsoft Visual C++ Redistributable Package 2013 (provided with SDK - vcredist_x86 or
vcredist_x64)

6.1.2.1 Visual C++

Testapp can be built using testapp.sln. Library must be compiled with MS Visual C++ too. Make sure that Microsoft
Visual C++ Redistributable Package 2013 is installed.

Open solution examples/testapp/testapp.sln, build and run from the IDE.

6.1.2.2 .NET (C#)

Wrapper assembly for libximc.dll is wrappers/csharp/ximcnet.dll. It is provided with two different architectures and
depends on .NET 2.0.

Test .NET applications for Visual Studio 2013 is located at testcs (for C#). Open solutions and build.

6.1.2.3 Python

Change current directory to the examples/testpython. Before launch:

On OS X: copy library ximc/macosx/libximc.framework to the current directory.

On Linux: you may need to set LD_LIBRARY_PATH so Python can locate libraries with RPATH. For example, you
may need:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:`pwd`

On Windows before the start nothing needs to be done. Launch Python 2 or Python 3:

6.1. Programming guide 174

https://files.mdrive.tech/ru/product/mDrive/
https://files.mdrive.tech/en/product/mDrive/

mDrive User Manual, Release 3.1.2

python testpython.py

Note: Generic logging facility. If you want to turn on file logging, you should run the program that uses mDrive
library with the “XILOG” environment variable set to desired file name. This file will be opened for writing on the first
log event and will be closed when the program which uses mDrive library terminates. Data which is sent to/received
from the controller is logged along with port open and close events.

Note: Required permissions: mDrive library generally does not require special permissions to work, it only needs
read/write access to USB-serial ports on the system. An exception to this rule is a Windows-only “fix_usbser_sys()”
function - it needs elevation and will produce null result if run as a regular user.

Note: C-profiles. C-profiles are header files distributed with the mDrive library. They enable one to set all controller
settings for any of the supported stages with a single function call in a C/C++ program. You may see how to use
C-profiles in “testcprofile” example directory.

The development kit is available on request by mail support@mdrive.tech. It contains the compiled mDrive library for
Windows, Linux and Mac OS systems, the programming guide and the examples. mDrive library is a cross-platform
library that supports C++, C# and Python languages. The examples included in the library package are intended for
quick acquaintance with the programming for mDrive controllers. The mDrive library sources are also available on
request.

Attention: Programming guide is included in mDrive library archive. It is located in ../doc-en/mDrive7-en.pdf.
The programming guide is Doxygen-based.

6.2 Communication protocol specification

Communication protocol v20.8

• Protocol description

• Command execution

• Controller-side error processing

– Wrong command or data

– CRC calculation

– Transmission errors

– Timeout resynchronization

– Zero byte resynchronization

• Library-side error processing

– Library return codes

– Zero byte synchronization procedure

6.2. Communication protocol specification 175

mailto:support@mdrive.tech

mDrive User Manual, Release 3.1.2

• Controller error response types

– ERRC

– ERRD

– ERRV

• All controller commands

– Command GACC

– Command GBRK

– Command GCAL

– Command GCTL

– Command GCTP

– Command GEAS

– Command GEDS

– Command GEIO

– Command GEMF

– Command GENG

– Command GENI

– Command GENS

– Command GENT

– Command GEST

– Command GFBS

– Command GGRI

– Command GGRS

– Command GHOM

– Command GHSI

– Command GHSS

– Command GJOY

– Command GMOV

– Command GMTI

– Command GMTS

– Command GNET

– Command GNME

– Command GNMF

– Command GNVM

– Command GPID

– Command GPWD

6.2. Communication protocol specification 176

mDrive User Manual, Release 3.1.2

– Command GPWR

– Command GSEC

– Command GSNI

– Command GSNO

– Command GSTI

– Command GSTS

– Command GURT

– Command SACC

– Command SBRK

– Command SCAL

– Command SCTL

– Command SCTP

– Command SEAS

– Command SEDS

– Command SEIO

– Command SEMF

– Command SENG

– Command SENI

– Command SENS

– Command SENT

– Command SEST

– Command SFBS

– Command SGRI

– Command SGRS

– Command SHOM

– Command SHSI

– Command SHSS

– Command SJOY

– Command SMOV

– Command SMTI

– Command SMTS

– Command SNET

– Command SNME

– Command SNMF

– Command SNVM

6.2. Communication protocol specification 177

mDrive User Manual, Release 3.1.2

– Command SPID

– Command SPWD

– Command SPWR

– Command SSEC

– Command SSNI

– Command SSNO

– Command SSTI

– Command SSTS

– Command SURT

– Command ASIA

– Command CLFR

– Command CONN

– Command DBGR

– Command DBGW

– Command DISC

– Command EERD

– Command EESV

– Command GBLV

– Command GETC

– Command GETI

– Command GETM

– Command GETS

– Command GFWV

– Command GOFW

– Command GPOS

– Command GSER

– Command GUID

– Command HASF

– Command HOME

– Command IRND

– Command LEFT

– Command LOFT

– Command MOVE

– Command MOVR

– Command PWOF

6.2. Communication protocol specification 178

mDrive User Manual, Release 3.1.2

– Command RDAN

– Command READ

– Command RERS

– Command REST

– Command RIGT

– Command SARS

– Command SAVE

– Command SPOS

– Command SSER

– Command SSTP

– Command STMS

– Command STOP

– Command UPDF

– Command WDAT

– Command WKEY

– Command ZERO

6.2.1 Protocol description
Controller can be controlled from the PC using serial connection (COM-port). COM-port parameters are fixed
controller-side:

• Speed: 115200 baud

• Frame size: 8 bits

• Stop-bits: 2 bits

• Parity: none

• Flow control: none

• Byte receive timeout: 400 ms

• Bit order: little endian

• Byte order: little endian

6.2.2 Command execution
All data transfers are initiated by the PC, meaning that the controller waits for incoming commands and replies ac-
cordingly. Each command is followed by the controller response, with rare exceptions of some service commands.
One should not send another command without waiting for the previous command answer.

Commands are split into service, general control and general information types. Commands are executed immedi-
ately. Parameters which are set by Sxxx commands are applied no later than 1ms after acknowledgement. Command
processing does not affect real-time engine control (PWM, encoder readout, etc).

Both controller and PC have an IO buffer. Received commands and command data are processed once and then
removed from buffer. Each command consists of 4-byte identifier and optionally a data section followed by its 2-byte
CRC. Data can be transmitted in both directions, from PC to the controller and vice versa. Command is scheduled for

6.2. Communication protocol specification 179

mDrive User Manual, Release 3.1.2

execution if it is a legitimate command and (in case of data) if its CRC matches. After processing a correct command
controller replies with 4 bytes - the name of processed command, followed by data and its 2-byte CRC, if the command
is supposed to return data.

6.2.3 Controller-side error processing

6.2.3.1 Wrong command or data

If the controller receives a command that cannot be interpreted as a legitimate command, then controller ignores
this command, replies with an “errc” string and sets “command error” flag in the current status data structure. If
the unreconized command contained additional data, then it can be interpreted as new command(s). In this case
resynchronization is required.

If the controller receives a valid command with data and its CRC doesn’t match the CRC computed by the controller,
then controller ignores this command, replies with an “errd” string and sets “data error” flag in the current status data
structure. In this case synchronization is not needed.

6.2.3.2 CRC calculation

CRC is calculated for data only, 4-byte command identifier is not included. CRC algorithm in C is as follows:

unsigned short CRC16(INT8U *pbuf, unsigned short n)
{

unsigned short crc, i, j, carry_flag, a;
crc = 0xffff;
for(i = 0; i < n; i++)
{
crc = crc ^ pbuf[i];
for(j = 0; j < 8; j++)
{

a = crc;
carry_flag = a & 0x0001;
crc = crc >> 1;
if (carry_flag == 1) crc = crc ^ 0xa001;

}
}
return crc;

}

This function receives a pointer to the data array, pbuf, and data length in bytes, n. It returns a two byte CRC code.

The example of CRC calculation:

Command code (CMD): “home” or 0x656D6F68

0x68 0x6F 0x6D 0x65
CMD

Command code (CMD): “gpos” or 0x736F7067

0x67 0x70 0x6F 0x73
CMD

Command code (CMD): “movr” or 0x72766F6D

0x6D 0x6F 0x76 0x72 0x00 0x00 0x00 0xC8 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
→˓0x53 0xc7
CMD DeltaPosition uDPos Reserved
→˓CRC

6.2. Communication protocol specification 180

mDrive User Manual, Release 3.1.2

6.2.3.3 Transmission errors

Most probable transmission errors are missing, extra or altered byte. In usual settings transmission errors happen
rarely, if at all.

Frequent errors are possible when using low-quality or broken USB-cable or board interconnection cable. Protocol
is not designed for use in noisy environments and in rare cases an error may match a valid command code and get
executed.

Missing byte, controller side “

A missing byte on the controller side leads to a timeout on the PC side. Command is considered to be sent unsuccess-
fully by the PC. Synchronization is momentarily disrupted and restored after a timeout.

Missing byte, PC side

A missing byte on the PC side leads to a timeout on PC side. Synchronization is maintained.

Extra byte, controller side

An extra byte received by the controller leads to one or several “errc” or “errd” responses. Command is consid-
ered to be sent unsuccessfully by the PC. Receive buffer may also contain one or several “errc” or “errd” responses.
Synchronization is disrupted.

Extra byte, PC side

An extra byte received by the PC leads to an incorrectly interpreted command or CRC and an extra byte in the receive
buffer. Synchronization is disrupted.

Altered byte, controller side

An altered byte received by the controller leads to one or several “errc” or “errd” responses. Command is consid-
ered to be sent unsuccessfully by the PC. Receive buffer may also contain one or several “errc” or “errd” responses.
Synchronization can rarely be disrupted, but is generally maintained.

Altered byte, PC side

6.2. Communication protocol specification 181

mDrive User Manual, Release 3.1.2

An altered byte received by the PC leads to an incorrectly interpreted command or CRC. Synchronization is main-
tained.

6.2.3.4 Timeout resynchronization

If during packet reception next byte wait time exceeds timeout value, then partially received command is ignored
and receive buffer is cleared. Controller timeout should be less than PC timeout, taking into account time it takes to
transmit the data.

6.2.3.5 Zero byte resynchronization

There are no command codes that start with a zero byte (‘\0’). This allows for a following synchronization procedure:
controller always answers with a zero byte if the first command byte is zero, PC ignores first response byte if it is a
zero byte. Then, if synchronization is disrupted on either side the following algorithm is used:

In case PC receives “errc”, “errd” or a wrong command answer code, then PC sends 4 to 250 zeroes to the controller
(250 byte limit is caused by input buffer length and usage of I2C protocol, less than 4 zeroes do not guarantee success-
ful resynchronization). During this time PC continuously reads incoming bytes from the controller until the first zero
is received and stops sending and receiving right after that.

Received zero byte is likely not a part of a response to a previous command because on error PC receives “errc”/”errd”
response. It is possible in rare cases, then synchronization procedure will start again. Therefore first zero byte received
by the PC means that controller input buffer is already empty and will remain so until any command is sent. Right
after receiving first zero byte from the controller PC is ready to transmit next command code. The rest of zero bytes
in transit will be ignored because they will be received before controller response.

This completes the zero byte synchronization procedure.

6.2.4 Library-side error processing
Nearly every library function has a return status of type result_t.

After sending command to the controller library reads incoming bytes until a non-zero byte is received. All zero bytes
are ignored. Library reads first 4 bytes and compares them to the command code. It then waits for data section and
CRC, if needed. If first 4 received bytes do not match the sent command identifier, then zero byte synchronization
procedure is launched, command is considered to be sent unsuccessfully. If first 4 received bytes match the sent
command identifier and command has data section, but the received CRC doesn’t match CRC calculated from the
received data, then zero byte synchronization procedure is launched, command is considered to be sent unsuccessfully.
If a timeout is reached while the library is waiting for the controller response, then zero byte synchronization procedure
is launched, command is considered to be sent unsuccessfully.

If no errors were detected, then command is considered to be successfully completed and result_ok is returned.

6.2. Communication protocol specification 182

mDrive User Manual, Release 3.1.2

6.2.4.1 Library return codes

• result_ok. No errors detected.

• result_error. Generic error. Can happen because of hardware problems, empty port buffer, timeout or successfull
synchronization after an error. Another common reason for this error is protocol version mismatch between
controller firmware and PC library.

• result_nodevice. Error opening device, lost connection or failed synchronization. Device reopen and/or user
action is required.

If a function returns an error values of all parameters it writes to are undefined. Error code may be accompanied by
detailed error description output to system log (Unix-like OS) or standard error (Windows-like OS).

6.2.4.2 Zero byte synchronization procedure

Synchronization is performed by means of sending zero (‘\0’) bytes and reading bytes until a zero byte is received.
Optionally one may clear port buffer at the end of synchronization procedure. Initially 64 zero bytes are sent. If there
were no zero bytes received during the timeout, then a string of 64 bytes is sent 3 more times. After 4 unsuccessful
attempts and no zero bytes received device is considered lost. In this case library should return result_nodevice error
code. In case of successful syncronization library returns result_error.

6.2. Communication protocol specification 183

mDrive User Manual, Release 3.1.2

6.2.5 Controller error response types

6.2.5.1 ERRC

Answer: (4 bytes)

Code: “errc” or 0x63727265

uint32_t errc Command error

Description:

Controller answers with “errc” if the command is either not recognized or cannot be processed and sets the correspod-
ing bit in status data structure.

6.2.5.2 ERRD

Answer: (4 bytes)

Code: “errd” or 0x64727265

uint32_t errd Data error

Description:

Controller answers with “errd” if the CRC of the data section computed by the controller doesn’t match the received
CRC field and sets the correspoding bit in status data structure.

6.2.5.3 ERRV

Answer: (4 bytes)

Code: “errv” or 0x76727265

uint32_t errv Value error

Description:

Controller answers with “errv” if any of the values in the command are out of acceptable range and can not be applied.
Inacceptable value is replaced by a rounded, truncated or default value. Controller also sets the correspoding bit in
status data structure.

6.2.6 All controller commands

6.2.6.1 Command GACC

Command code (CMD): “gacc” or 0x63636167.

Request: (4 bytes)

uint32_t CMD Command

Answer: (114 bytes)

uint32_t CMD Command
Continued on next page

6.2. Communication protocol specification 184

mDrive User Manual, Release 3.1.2

Table 6.6 – continued from previous page
int8_t MagneticBrakeInfo The manufacturer and the part number

of magnetic brake, the maximum string
length is 24 characters.

float MBRatedVoltage Rated voltage for controlling the mag-
netic brake (V). Data type: float.

float MBRatedCurrent Rated current for controlling the mag-
netic brake (A). Data type: float.

float MBTorque Retention moment (mN m). Data type:
float.

uint32_t MBSettings Flags of magnetic brake settings. This is
a bit mask for bitwise operations.

0x1 - MB_AVAILABLE If the flag is set, the magnetic brake is
available

0x2 - MB_POWERED_HOLD If this flag is set, the magnetic brake is on
when powered

int8_t TemperatureSensorInfo The manufacturer and the part number
of the temperature sensor, the maximum
string length: 24 characters.

float TSMin The minimum measured temperature
(degrees Celsius) Data type: float.

float TSMax The maximum measured temperature
(degrees Celsius) Data type: float.

float TSGrad The temperature gradient (V/degrees
Celsius). Data type: float.

uint32_t TSSettings Flags of temperature sensor settings.
This is a bit mask for bitwise operations.

0x7 - TS_TYPE_BITS Bits of the temperature sensor type
0x0 - TS_TYPE_UNKNOWN Unknown type of sensor
0x1 - TS_TYPE_THERMOCOUPLE Thermocouple
0x2 - TS_TYPE_SEMICONDUCTOR The semiconductor temperature sensor
0x8 - TS_AVAILABLE If the flag is set, the temperature sensor is

available
uint32_t LimitSwitchesSettings Flags of limit switches settings. This is a

bit mask for bitwise operations.
0x1 - LS_ON_SW1_AVAILABLE If the flag is set, the limit switch con-

nected to pin SW1 is available
0x2 - LS_ON_SW2_AVAILABLE If the flag is set, the limit switch con-

nected to pin SW2 is available
0x4 - LS_SW1_ACTIVE_LOW If the flag is set, the limit switch con-

nected to pin SW1 is triggered by a low
level on the pin

0x8 - LS_SW2_ACTIVE_LOW If the flag is set, the limit switch con-
nected to pin SW2 is triggered by a low
level on pin

0x10 - LS_SHORTED If the flag is set, the limit switches are
shorted

uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read additional accessory information from the EEPROM.

6.2. Communication protocol specification 185

mDrive User Manual, Release 3.1.2

6.2.6.2 Command GBRK

Command code (CMD): “gbrk” or 0x6B726267.

Request: (4 bytes)

uint32_t CMD Command

Answer: (25 bytes)

uint32_t CMD Command
uint16_t t1 Time in ms between turning on motor

power and turning off the brake.
uint16_t t2 Time in ms between the brake turning off

and moving readiness. All moving com-
mands will execute after this interval.

uint16_t t3 Time in ms between motor stop and the
brake turning on.

uint16_t t4 Time in ms between turning on the brake
and turning off motor power.

uint8_t BrakeFlags Flags. This is a bit mask for bitwise op-
erations.

0x1 - BRAKE_ENABLED Brake control is enabled if this flag is set.
0x2 - BRAKE_ENG_PWROFF Brake turns the stepper motor power off

if this flag is set.
uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

Description: Read break control settings.

6.2.6.3 Command GCAL

Command code (CMD): “gcal” or 0x6C616367.

Request: (4 bytes)

uint32_t CMD Command

Answer: (118 bytes)

uint32_t CMD Command
float CSS1_A Scaling factor for the analog measure-

ments of the A winding current.
float CSS1_B Offset for the analog measurements of

the A winding current.
float CSS2_A Scaling factor for the analog measure-

ments of the B winding current.
float CSS2_B Offset for the analog measurements of

the B winding current.
float FullCurrent_A Scaling factor for the analog measure-

ments of the full current.
Continued on next page

6.2. Communication protocol specification 186

mDrive User Manual, Release 3.1.2

Table 6.10 – continued from previous page
float FullCurrent_B Offset for the analog measurements of

the full current.
uint8_t Reserved [88] Reserved (88 bytes)
uint16_t CRC Checksum

Description: Read calibration settings. Manufacturer only. This function reads the structure with calibration settings.
These settings are used to convert bare ADC values to winding currents in mA and the full current in mA. Parameters
are grouped into pairs, XXX_A and XXX_B, representing linear equation coefficients. The first one is the slope,
the second one is the constant term. Thus, XXX_Current[mA] = XXX_A[mA/ADC]XXX_ADC_CODE[ADC] +
XXX_B[mA].

6.2.6.4 Command GCTL

Command code (CMD): “gctl” or 0x6C746367.

Request: (4 bytes)

uint32_t CMD Command

Answer: (93 bytes)

uint32_t CMD Command
uint32_t MaxSpeed Array of speeds (full step) used with the

joystick and the button control. Range:
0..100000.

uint8_t uMaxSpeed Array of speeds (in microsteps) used with
the joystick and the button control. The
microstep size and the range of valid val-
ues for this field depend on the selected
step division mode (see the Microstep-
Mode field in engine_settings).

uint16_t Timeout Timeout[i] is timeout in ms. After that,
max_speed[i+1] is applied. It’s used with
the button control only.

uint16_t MaxClickTime Maximum click time (in ms). Until the
expiration of this time, the first speed
isn’t applied.

uint16_t Flags Control flags. This is a bit mask for bit-
wise operations.

0x3 - CONTROL_MODE_BITS Bits to control the engine by joystick or
buttons.

0x0 - CONTROL_MODE_OFF Control is disabled.
0x1 - CONTROL_MODE_JOY Control by joystick.
0x2 - CONTROL_MODE_LR Control by left/right buttons.
0x4 - CONTROL_BTN_LEFT_PUSHED_OPEN Pushed left button corresponds to the

open contact if this flag is set.
0x8 - CONTROL_BTN_RIGHT_PUSHED_OPEN Pushed right button corresponds to open

contact if this flag is set.
int32_t DeltaPosition Position Shift (delta) (full step)

Continued on next page

6.2. Communication protocol specification 187

mDrive User Manual, Release 3.1.2

Table 6.12 – continued from previous page
int16_t uDeltaPosition Fractional part of the shift in micro steps.

It’s used with a stepper motor only. The
microstep size and the range of valid val-
ues for this field depend on the selected
step division mode (see the Microstep-
Mode field in engine_settings).

uint8_t Reserved [9] Reserved (9 bytes)
uint16_t CRC Checksum

Description: Read motor control settings. In case of CTL_MODE=1, joystick motor control is enabled. In this
mode, while the joystick is maximally displaced, the engine tends to move at MaxSpeed[i]. i=0 if another value
hasn’t been set at the previous usage. To change the speed index ‘i’, use the buttons. In case of CTL_MODE=2, the
motor is controlled by the left/right buttons. When you click on the button, the motor starts moving in the appropriate
direction at a speed MaxSpeed[0]. After Timeout[i], motor moves at speed MaxSpeed[i+1]. At the transition between
MaxSpeed[i] and MaxSpeed[i+1] the motor just accelerates/decelerates as usual.

6.2.6.5 Command GCTP

Command code (CMD): “gctp” or 0x70746367.

Request: (4 bytes)

uint32_t CMD Command

Answer: (18 bytes)

uint32_t CMD Command
uint8_t CTPMinError The minimum difference between the

SM position in steps and the encoder
position that causes the setting of the
STATE_CTP_ERROR flag. Measured in
steps.

uint8_t CTPFlags This is a bit mask for bitwise operations.
0x1 - CTP_ENABLED The position control is enabled if the flag

is set.
0x2 - CTP_BASE The position control is based on the revo-

lution sensor if this flag is set; otherwise,
it is based on the encoder.

0x4 - CTP_ALARM_ON_ERROR Set ALARM on mismatch if the flag is
set.

0x8 - REV_SENS_INV Typically, the sensor is active when it
is at 0, and inversion makes active at 1.
That is, if you do not invert, it is normal
logic - 0 is the activation.

0x10 - CTP_ERROR_CORRECTION Correct errors that appear when slippage
occurs if the flag is set. It works only
with the encoder. Incompatible with the
flag CTP_ALARM_ON_ERROR.

uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

6.2. Communication protocol specification 188

mDrive User Manual, Release 3.1.2

Description: Read control position settings (used with stepper motor only). When controlling the step motor with an
encoder (CTP_BASE=0), it is possible to detect the loss of steps. The controller knows the number of steps per revo-
lution (GENG::StepsPerRev) and the encoder resolution (GFBS::IPT). When the control is enabled (CTP_ENABLED
is set), the controller stores the current position in the steps of SM and the current position of the encoder. Next, the
encoder position is converted into steps at each step, and if the difference between the current position in steps and the
encoder position is greater than CTPMinError, the flag STATE_CTP_ERROR is set. Alternatively, the stepper motor
may be controlled with the speed sensor (CTP_BASE 1). In this mode, at the active edges of the input clock, the
controller stores the current value of steps. Then, at each revolution, the controller checks how many steps have been
passed. When the difference is over the CTPMinError, the STATE_CTP_ERROR flag is set.

6.2.6.6 Command GEAS

Command code (CMD): “geas” or 0x73616567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (54 bytes)

uint32_t CMD Command
uint16_t stepcloseloop_Kw Mixing ratio of the actual and set speed,

range [0, 100], default value 50.
uint16_t stepcloseloop_Kp_low Position feedback in the low-speed zone,

range [0, 65535], default value 1000.
uint16_t stepcloseloop_Kp_high Position feedback in the high-speed

zone, range [0, 65535], default value 33.
uint8_t Reserved [42] Reserved (42 bytes)
uint16_t CRC Checksum

Description: Read engine advanced settings.

6.2.6.7 Command GEDS

Command code (CMD): “geds” or 0x73646567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (26 bytes)

uint32_t CMD Command
uint8_t BorderFlags Border flags, specify types of borders and

motor behavior at borders. This is a bit
mask for bitwise operations.

0x1 - BORDER_IS_ENCODER Borders are fixed by predetermined en-
coder values, if set; borders are placed on
limit switches, if not set.

0x2 - BORDER_STOP_LEFT The motor should stop on the left border.
Continued on next page

6.2. Communication protocol specification 189

mDrive User Manual, Release 3.1.2

Table 6.18 – continued from previous page
0x4 - BORDER_STOP_RIGHT Motor should stop on right border.
0x8 - BORDERS_SWAP_MISSET_DETECTION Motor should stop on both borders. Need

to save motor then wrong border settings
is set

uint8_t EnderFlags Flags specify electrical behavior of limit
switches like order and pulled positions.
This is a bit mask for bitwise operations.

0x1 - ENDER_SWAP First limit switch on the right side, if set;
otherwise on the left side.

0x2 - ENDER_SW1_ACTIVE_LOW 1 - Limit switch connected to pin SW1 is
triggered by a low level on pin.

0x4 - ENDER_SW2_ACTIVE_LOW 1 - Limit switch connected to pin SW2 is
triggered by a low level on pin.

int32_t LeftBorder Left border position, used if BOR-
DER_IS_ENCODER flag is set.

int16_t uLeftBorder Left border position in microsteps (used
with stepper motor only). The microstep
size and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings).

int32_t RightBorder Right border position, used if BOR-
DER_IS_ENCODER flag is set.

int16_t uRightBorder Right border position in microsteps.
Used with a stepper motor only. The mi-
crostep size and the range of valid values
for this field depend on the selected step
division mode (see the MicrostepMode
field in engine_settings).

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Description: Read border and limit switches settings.

6.2.6.8 Command GEIO

Command code (CMD): “geio” or 0x6F696567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (18 bytes)

uint32_t CMD Command
uint8_t EXTIOSetupFlags Configuration flags of the external I-O.

This is a bit mask for bitwise operations.
0x1 - EXTIO_SETUP_OUTPUT EXTIO works as output if the flag is set,

works as input otherwise.
Continued on next page

6.2. Communication protocol specification 190

mDrive User Manual, Release 3.1.2

Table 6.20 – continued from previous page
0x2 - EXTIO_SETUP_INVERT Interpret EXTIO state inverted if the flag

is set. A falling front is treated as an input
event and a low logic level as an active
state.

uint8_t EXTIOModeFlags Flags mode settings external I-O. This is
a bit mask for bitwise operations.

0xf - EXTIO_SETUP_MODE_IN_BITS Bits of the behavior selector when the
signal on input goes to the active state.

0x0 - EXTIO_SETUP_MODE_IN_NOP Do nothing.
0x1 - EXTIO_SETUP_MODE_IN_STOP Issue STOP command, ceasing the en-

gine movement.
0x2 - EXTIO_SETUP_MODE_IN_PWOF Issue PWOF command, powering off all

engine windings.
0x3 - EXTIO_SETUP_MODE_IN_MOVR Issue MOVR command with last used

settings.
0x4 - EXTIO_SETUP_MODE_IN_HOME Issue HOME command.
0x5 - EXTIO_SETUP_MODE_IN_ALARM Set Alarm when the signal goes to the ac-

tive state.
0xf0 - EXTIO_SETUP_MODE_OUT_BITS Bits of the output behavior selection.
0x0 - EXTIO_SETUP_MODE_OUT_OFF EXTIO pin always set in inactive state.
0x10 - EXTIO_SETUP_MODE_OUT_ON EXTIO pin always set in active state.
0x20 - EXTIO_SETUP_MODE_OUT_MOVING EXTIO pin stays active during moving

state.
0x30 - EXTIO_SETUP_MODE_OUT_ALARM EXTIO pin stays active during the alarm

state.
0x40 - EXTIO_SETUP_MODE_OUT_MOTOR_ON EXTIO pin stays active when windings

are powered.
uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

Description: Read EXTIO settings. This function reads a structure with a set of EXTIO settings from the controller’s
memory.

6.2.6.9 Command GEMF

Command code (CMD): “gemf” or 0x666D6567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (48 bytes)

uint32_t CMD Command
float L Motor winding inductance.
float R Motor winding resistance.
float Km Electromechanical ratio of the motor.
uint8_t BackEMFFlags Auto-settings stepper motor flags. This is

a bit mask for bitwise operations.
0x1 - BACK_EMF_INDUCTANCE_AUTO Flag of auto-detection of inductance of

windings of the engine.
Continued on next page

6.2. Communication protocol specification 191

mDrive User Manual, Release 3.1.2

Table 6.22 – continued from previous page
0x2 - BACK_EMF_RESISTANCE_AUTO Flag of auto-detection of resistance of

windings of the engine.
0x4 - BACK_EMF_KM_AUTO Flag of auto-detection of electromechan-

ical coefficient of the engine.
uint8_t Reserved [29] Reserved (29 bytes)
uint16_t CRC Checksum

Description: Read electromechanical settings. The settings are different for different stepper motors.

6.2.6.10 Command GENG

Command code (CMD): “geng” or 0x676E6567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (34 bytes)

uint32_t CMD Command
uint16_t NomVoltage Rated voltage in tens of mV. Con-

troller will keep the voltage drop
on motor below this value if EN-
GINE_LIMIT_VOLT flag is set (used
with DC only).

uint16_t NomCurrent Rated current (in mA). Controller will
keep current consumed by motor below
this value if ENGINE_LIMIT_CURR
flag is set. Range: 15..8000

uint32_t NomSpeed Nominal (maximum) speed (in whole
steps/s or rpm for DC and stepper mo-
tor as a master encoder). Controller
will keep motor shaft RPM below this
value if ENGINE_LIMIT_RPM flag is
set. Range: 1..100000.

uint8_t uNomSpeed The fractional part of a nominal speed
in microsteps (is only used with stepper
motor). Microstep size and the range
of valid values for this field depend on
selected step division mode (see Mi-
crostepMode field in engine_settings).

uint16_t EngineFlags Set of flags specify motor shaft move-
ment algorithm and a list of limitations.
This is a bit mask for bitwise operations.

Continued on next page

6.2. Communication protocol specification 192

mDrive User Manual, Release 3.1.2

Table 6.24 – continued from previous page
0x1 - ENGINE_REVERSE Reverse flag. It determines motor shaft

rotation direction that corresponds to
feedback counts increasing. If not set
(default), motor shaft rotation direc-
tion under positive voltage corresponds
to feedback counts increasing and vice
versa. Change it if you see that positive
directions on motor and feedback are op-
posite.

0x2 - ENGINE_CURRENT_AS_RMS Engine current meaning flag. If the flag
is unset, then the engine’s current value
is interpreted as the maximum amplitude
value. If the flag is set, then the engine
current value is interpreted as the root-
mean-square current value (for stepper)
or as the current value calculated from
the maximum heat dissipation (BLDC).

0x4 - ENGINE_MAX_SPEED Max speed flag. If it is set, the engine
uses the maximum speed achievable with
the present engine settings as its nominal
speed.

0x8 - ENGINE_ANTIPLAY Play compensation flag. If it is set, the
engine makes backlash (play) compensa-
tion and reaches the predetermined posi-
tion accurately at low speed.

0x10 - ENGINE_ACCEL_ON Acceleration enable flag. If it set, motion
begins with acceleration and ends with
deceleration.

0x20 - ENGINE_LIMIT_VOLT Maximum motor voltage limit enable
flag (is only used with DC motor).

0x40 - ENGINE_LIMIT_CURR Maximum motor current limit enable flag
(is only used with DC motor).

0x80 - ENGINE_LIMIT_RPM Maximum motor speed limit enable flag.
int16_t Antiplay Number of pulses or steps for backlash

(play) compensation procedure. Used if
ENGINE_ANTIPLAY flag is set.

uint8_t MicrostepMode Settings of microstep mode (Used with
stepper motor only). the microstep size
and the range of valid values for this
field depend on the selected step divi-
sion mode (see MicrostepMode field in
engine_settings). This is a bit mask for
bitwise operations.

0x1 - MICROSTEP_MODE_FULL Full step mode.
0x2 - MICROSTEP_MODE_FRAC_2 1/2-step mode.
0x3 - MICROSTEP_MODE_FRAC_4 1/4-step mode.
0x4 - MICROSTEP_MODE_FRAC_8 1/8-step mode.
0x5 - MICROSTEP_MODE_FRAC_16 1/16-step mode.
0x6 - MICROSTEP_MODE_FRAC_32 1/32-step mode.
0x7 - MICROSTEP_MODE_FRAC_64 1/64-step mode.
0x8 - MICROSTEP_MODE_FRAC_128 1/128-step mode.

Continued on next page

6.2. Communication protocol specification 193

mDrive User Manual, Release 3.1.2

Table 6.24 – continued from previous page
0x9 - MICROSTEP_MODE_FRAC_256 1/256-step mode.

uint16_t StepsPerRev Number of full steps per revolution
(Used with stepper motor only). Range:
1..65535.

uint8_t Reserved [12] Reserved (12 bytes)
uint16_t CRC Checksum

Description: Read engine settings. This function reads the structure containing a set of useful motor settings stored
in the controller’s memory. These settings specify motor shaft movement algorithm, list of limitations and rated
characteristics.

6.2.6.11 Command GENI

Command code (CMD): “geni” or 0x696E6567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read encoder information from the EEPROM.

6.2.6.12 Command GENS

Command code (CMD): “gens” or 0x736E6567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (54 bytes)

uint32_t CMD Command
float MaxOperatingFrequency Maximum operation frequency (kHz).

Data type: float.
float SupplyVoltageMin Minimum supply voltage (V). Data type:

float.
float SupplyVoltageMax Maximum supply voltage (V). Data type:

float.
float MaxCurrentConsumption Max current consumption (mA). Data

type: float.
uint32_t PPR The number of counts per revolution

Continued on next page

6.2. Communication protocol specification 194

mDrive User Manual, Release 3.1.2

Table 6.28 – continued from previous page
uint32_t EncoderSettings Encoder settings flags. This is a bit mask

for bitwise operations.
0x1 - ENCSET_DIFFERENTIAL_OUTPUT If the flag is set, the encoder has differen-

tial output, otherwise single-ended out-
put

0x4 - ENCSET_PUSHPULL_OUTPUT If the flag is set the encoder has push-pull
output, otherwise open drain output

0x10 - ENCSET_INDEXCHANNEL_PRESENT If the flag is set, the encoder has an extra
indexed channel

0x40 - ENCSET_REVOLUTIONSENSOR_PRESENT If the flag is set, the encoder has the rev-
olution sensor

0x100 - ENCSET_REVOLUTIONSENSOR_ACTIVE_HIGHIf the flag is set, the revolution sensor’s
active state is high logic state; otherwise,
the active state is low logic state

uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read encoder settings from the EEPROM.

6.2.6.13 Command GENT

Command code (CMD): “gent” or 0x746E6567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (14 bytes)

uint32_t CMD Command
uint8_t EngineType Engine type. This is a bit mask for bit-

wise operations.
0x0 - ENGINE_TYPE_NONE A value that shouldn’t be used.
0x1 - ENGINE_TYPE_DC DC motor.
0x2 - ENGINE_TYPE_2DC 2 DC motors.
0x3 - ENGINE_TYPE_STEP Step motor.
0x4 - ENGINE_TYPE_TEST Duty cycle are fixed. Used only manu-

facturer.
0x5 - ENGINE_TYPE_BRUSHLESS Brushless motor.

uint8_t DriverType Driver type. This is a bit mask for bitwise
operations.

0x1 - DRIVER_TYPE_DISCRETE_FET Driver with discrete FET keys. Default
option.

0x2 - DRIVER_TYPE_INTEGRATE Driver with integrated IC.
0x3 - DRIVER_TYPE_EXTERNAL External driver.

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Description: Return engine type and driver type.

6.2. Communication protocol specification 195

mDrive User Manual, Release 3.1.2

6.2.6.14 Command GEST

Command code (CMD): “gest” or 0x74736567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (46 bytes)

uint32_t CMD Command
uint16_t Param1
uint8_t Reserved [38] Reserved (38 bytes)
uint16_t CRC Checksum

Description: Read extended settings. Currently, it is not in use.

6.2.6.15 Command GFBS

Command code (CMD): “gfbs” or 0x73626667.

Request: (4 bytes)

uint32_t CMD Command

Answer: (18 bytes)

uint32_t CMD Command
uint16_t IPS The number of encoder counts per shaft

revolution. Range: 1..655535. The field
is obsolete, it is recommended to write 0
to IPS and use the extended CountsPer-
Turn field. You may need to update the
controller firmware to the latest version.

uint8_t FeedbackType Type of feedback. This is a bit mask for
bitwise operations.

0x1 - FEEDBACK_ENCODER Feedback by encoder.
0x4 - FEEDBACK_EMF Feedback by EMF.
0x5 - FEEDBACK_NONE Feedback is absent.
0x6 - FEEDBACK_ENCODER_MEDIATED Feedback by encoder mediated by me-

chanical transmission (for example lead-
screw).

uint8_t FeedbackFlags Flags. This is a bit mask for bitwise op-
erations.

0x1 - FEEDBACK_ENC_REVERSE Reverse count of encoder.
0xc0 - FEEDBACK_ENC_TYPE_BITS Bits of the encoder type.
0x0 - FEEDBACK_ENC_TYPE_AUTO Auto detect encoder type.
0x40 - FEEDBACK_ENC_TYPE_SINGLE_ENDED Single-ended encoder.
0x80 - FEEDBACK_ENC_TYPE_DIFFERENTIAL Differential encoder.

Continued on next page

6.2. Communication protocol specification 196

mDrive User Manual, Release 3.1.2

Table 6.34 – continued from previous page
uint32_t CountsPerTurn The number of encoder counts per shaft

revolution. Range: 1..4294967295. To
use the CountsPerTurn field, write 0 in
the IPS field, otherwise the value from
the IPS field will be used.

uint8_t Reserved [4] Reserved (4 bytes)
uint16_t CRC Checksum

Description: Feedback settings.

6.2.6.16 Command GGRI

Command code (CMD): “ggri” or 0x69726767.

Request: (4 bytes)

uint32_t CMD Command

Answer: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read gear information from the EEPROM.

6.2.6.17 Command GGRS

Command code (CMD): “ggrs” or 0x73726767.

Request: (4 bytes)

uint32_t CMD Command

Answer: (58 bytes)

uint32_t CMD Command
float ReductionIn Input reduction coefficient. (Output

= (ReductionOut / ReductionIn) Input)
Data type: float.

float ReductionOut Output reduction coefficient. (Output
= (ReductionOut / ReductionIn) Input)
Data type: float.

float RatedInputTorque Maximum continuous torque (N m).
Data type: float.

float RatedInputSpeed Maximum speed on the input shaft (rpm).
Data type: float.

Continued on next page

6.2. Communication protocol specification 197

mDrive User Manual, Release 3.1.2

Table 6.38 – continued from previous page
float MaxOutputBacklash Output backlash of the reduction gear

(degree). Data type: float.
float InputInertia Equivalent input gear inertia (g cm2).

Data type: float.
float Efficiency Reduction gear efficiency (%). Data

type: float.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read gear settings from the EEPROM.

6.2.6.18 Command GHOM

Command code (CMD): “ghom” or 0x6D6F6867.

Request: (4 bytes)

uint32_t CMD Command

Answer: (33 bytes)

uint32_t CMD Command
uint32_t FastHome Speed used for first motion (full steps).

Range: 0..100000.
uint8_t uFastHome Fractional part of the speed for first mo-

tion, microsteps. The microstep size
and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings).

uint32_t SlowHome Speed used for second motion (full
steps). Range: 0..100000.

uint8_t uSlowHome Part of the speed for second motion, mi-
crosteps. The microstep size and the
range of valid values for this field de-
pend on the selected step division mode
(see the MicrostepMode field in en-
gine_settings).

int32_t HomeDelta Distance from break point (full steps).
int16_t uHomeDelta Fractional part of the delta distance, mi-

crosteps. The microstep size and the
range of valid values for this field de-
pend on the selected step division mode
(see the MicrostepMode field in en-
gine_settings).

uint16_t HomeFlags Set of flags specifies the direction and
stopping conditions. This is a bit mask
for bitwise operations.

Continued on next page

6.2. Communication protocol specification 198

mDrive User Manual, Release 3.1.2

Table 6.40 – continued from previous page
0x1 - HOME_DIR_FIRST The flag defines the direction of the 1st

motion after execution of the home com-
mand. The direction is to the right if the
flag is set, and to the left otherwise.

0x2 - HOME_DIR_SECOND The flag defines the direction of the 2nd
motion. The direction is to the right if the
flag is set, and to the left otherwise.

0x4 - HOME_MV_SEC_EN Use the second phase of calibration to the
home position, if set; otherwise the sec-
ond phase is skipped.

0x8 - HOME_HALF_MV If the flag is set, the stop signals are ig-
nored during the first half-turn of the sec-
ond movement.

0x30 - HOME_STOP_FIRST_BITS Bits of the first stop selector.
0x10 - HOME_STOP_FIRST_REV First motion stops by revolution sensor.
0x20 - HOME_STOP_FIRST_SYN First motion stops by synchronization in-

put.
0x30 - HOME_STOP_FIRST_LIM First motion stops by limit switch.
0xc0 - HOME_STOP_SECOND_BITS Bits of the second stop selector.
0x40 - HOME_STOP_SECOND_REV Second motion stops by revolution sen-

sor.
0x80 - HOME_STOP_SECOND_SYN Second motion stops by synchronization

input.
0xc0 - HOME_STOP_SECOND_LIM Second motion stops by limit switch.
0x100 - HOME_USE_FAST Use the fast algorithm of calibration to

the home position, if set; otherwise the
traditional algorithm.

uint8_t Reserved [9] Reserved (9 bytes)
uint16_t CRC Checksum

Description: Read home settings. This function reads the structure with home position settings.

6.2.6.19 Command GHSI

Command code (CMD): “ghsi” or 0x69736867.

Request: (4 bytes)

uint32_t CMD Command

Answer: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read hall sensor information from the EEPROM.

6.2. Communication protocol specification 199

mDrive User Manual, Release 3.1.2

6.2.6.20 Command GHSS

Command code (CMD): “ghss” or 0x73736867.

Request: (4 bytes)

uint32_t CMD Command

Answer: (50 bytes)

uint32_t CMD Command
float MaxOperatingFrequency Maximum operation frequency (kHz).

Data type: float.
float SupplyVoltageMin Minimum supply voltage (V). Data type:

float.
float SupplyVoltageMax Maximum supply voltage (V). Data type:

float.
float MaxCurrentConsumption Maximum current consumption (mA).

Data type: float.
uint32_t PPR The number of counts per revolution
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read hall sensor settings from the EEPROM.

6.2.6.21 Command GJOY

Command code (CMD): “gjoy” or 0x796F6A67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (22 bytes)

uint32_t CMD Command
uint16_t JoyLowEnd Joystick lower end position. Range:

0..10000.
uint16_t JoyCenter Joystick center position. Range:

0..10000.
uint16_t JoyHighEnd Joystick upper end position. Range:

0..10000.
uint8_t ExpFactor Exponential nonlinearity factor.
uint8_t DeadZone Joystick dead zone.
uint8_t JoyFlags Joystick control flags. This is a bit mask

for bitwise operations.
0x1 - JOY_REVERSE Joystick action is reversed. The joystick

deviation to the upper values corresponds
to negative speed and vice versa.

uint8_t Reserved [7] Reserved (7 bytes)
uint16_t CRC Checksum

6.2. Communication protocol specification 200

mDrive User Manual, Release 3.1.2

Description: Read joystick settings. If joystick position falls outside DeadZone limits, a movement begins. The speed
is defined by the joystick’s position in the range of the DeadZone limit to the maximum deviation. Joystick positions
inside DeadZone limits correspond to zero speed (a soft stop of the motion), and positions beyond Low and High
limits correspond to MaxSpeed[i] or -MaxSpeed[i] (see command SCTL), where i = 0 by default and can be changed
with the left/right buttons (see command SCTL). If the next speed in the list is zero (both integer and microstep parts),
the button press is ignored. The first speed in the list shouldn’t be zero. The DeadZone ranges are illustrated on the
following picture.

The relationship between the deviation and the rate is exponential, allowing no switching speed combine high mobility
and accuracy. The following picture illustrates this:

The nonlinearity parameter is adjustable. Setting it to zero makes deviation/speed relation linear.

6.2.6.22 Command GMOV

Command code (CMD): “gmov” or 0x766F6D67.

6.2. Communication protocol specification 201

mDrive User Manual, Release 3.1.2

Request: (4 bytes)

uint32_t CMD Command

Answer: (30 bytes)

uint32_t CMD Command
uint32_t Speed Target speed (for stepper motor: steps/s,

for DC: rpm). Range: 0..100000.
uint8_t uSpeed Target speed in microstep fractions/s.

The microstep size and the range of valid
values for this field depend on the se-
lected step division mode (see the Mi-
crostepMode field in engine_settings).
Used with a stepper motor only.

uint16_t Accel Motor shaft acceleration, steps/s^2 (step-
per motor) or RPM/s (DC). Range:
1..65535.

uint16_t Decel Motor shaft deceleration, steps/s^2 (step-
per motor) or RPM/s (DC). Range:
1..65535.

uint32_t AntiplaySpeed Speed in antiplay mode, full steps/s
(stepper motor) or RPM (DC). Range:
0..100000.

uint8_t uAntiplaySpeed Speed in antiplay mode, microsteps/s.
The microstep size and the range of valid
values for this field depend on the se-
lected step division mode (see the Mi-
crostepMode field in engine_settings).
Used with a stepper motor only.

uint8_t MoveFlags Flags that control movement settings.
This is a bit mask for bitwise operations.

0x1 - RPM_DIV_1000 This flag indicates that the operating
speed specified in the command is set
in milliRPM. Applicable only for EN-
CODER feedback mode and only for
BLDC motors.

uint8_t Reserved [9] Reserved (9 bytes)
uint16_t CRC Checksum

Description: Movement settings read command (speed, acceleration, threshold, etc.).

6.2.6.23 Command GMTI

Command code (CMD): “gmti” or 0x69746D67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (70 bytes)

6.2. Communication protocol specification 202

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read motor information from the EEPROM.

6.2.6.24 Command GMTS

Command code (CMD): “gmts” or 0x73746D67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (112 bytes)

uint32_t CMD Command
uint8_t MotorType Motor type. This is a bit mask for bitwise

operations.
0x0 - MOTOR_TYPE_UNKNOWN Unknown type of engine
0x1 - MOTOR_TYPE_STEP Step engine
0x2 - MOTOR_TYPE_DC DC engine
0x3 - MOTOR_TYPE_BLDC BLDC engine

uint8_t ReservedField Reserved
uint16_t Poles Number of pole pairs for DC or BLDC

motors or number of steps per rotation
for stepper motors.

uint16_t Phases Number of phases for BLDC motors.
float NominalVoltage Nominal voltage on winding (B). Data

type: float
float NominalCurrent Maximum direct current in winding for

DC and BLDC engines, nominal current
in windings for stepper motors (A). Data
type: float.

float NominalSpeed Not used. Nominal speed (rpm). Used
for DC and BLDC engines. Data type:
float.

float NominalTorque Nominal torque (mN m). Used for DC
and BLDC engines. Data type: float.

float NominalPower Nominal power (W). Used for DC and
BLDC engines. Data type: float.

float WindingResistance Resistance of windings for DC engines,
of each of two windings for stepper mo-
tors, or of each of three windings for
BLDC engines (Ohm). Data type: float.

Continued on next page

6.2. Communication protocol specification 203

mDrive User Manual, Release 3.1.2

Table 6.52 – continued from previous page
float WindingInductance Inductance of windings for DC engines,

inductance of each of two windings for
stepper motors, or inductance of each of
three windings for BLDC engines (mH).
Data type: float.

float RotorInertia Rotor inertia (g cm2). Data type: float.
float StallTorque Torque hold position for a stepper motor

or torque at a motionless rotor for other
types of engines (mN m). Data type:
float.

float DetentTorque Holding torque position with unpowered
windings (mN m). Data type: float.

float TorqueConstant Torque constant that determines the pro-
portionality constant between the maxi-
mum rotor torque and current flowing in
the winding (mN m / A). Used mainly for
DC motors. Data type: float.

float SpeedConstant Velocity constant, which determines the
value or the amplitude of the induced
voltage on the motion of DC or BLDC
motors (rpm / V) or stepper motors
(steps/s / V). Data type: float.

float SpeedTorqueGradient Speed torque gradient (rpm / mN m).
Data type: float.

float MechanicalTimeConstant Mechanical time constant (ms). Data
type: float.

float MaxSpeed The maximum speed for stepper motors
(steps/s) or DC and BLDC motors (rmp).
Data type: float.

float MaxCurrent The maximum current in the winding
(A). Data type: float.

float MaxCurrentTime Safe duration of overcurrent in the wind-
ing (ms). Data type: float.

float NoLoadCurrent The current consumption in idle mode
(A). Used for DC and BLDC motors.
Data type: float.

float NoLoadSpeed Idle speed (rpm). Used for DC and
BLDC motors. Data type: float.

uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read motor settings from the EEPROM.

6.2.6.25 Command GNET

Command code (CMD): “gnet” or 0x74656E67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (38 bytes)

6.2. Communication protocol specification 204

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint8_t DHCPEnabled Indicates the method to get the IP-

address. It can be either 0 (static) or 1
(DHCP).

uint8_t IPv4Address IP-address of the device in format
x.x.x.x.

uint8_t SubnetMask The mask of the subnet in format x.x.x.x.
uint8_t DefaultGateway Default value of the gateway in format

x.x.x.x.
uint8_t Reserved [19] Reserved (19 bytes)
uint16_t CRC Checksum

Description: Read network settings. Manufacturer only. This function returns the current network settings.

6.2.6.26 Command GNME

Command code (CMD): “gnme” or 0x656D6E67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (30 bytes)

uint32_t CMD Command
int8_t PositionerName User’s positioner name. It can be set by a

user. Max string length: 16 characters.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Read the user’s stage name from the EEPROM.

6.2.6.27 Command GNMF

Command code (CMD): “gnmf” or 0x666D6E67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (30 bytes)

uint32_t CMD Command
int8_t ControllerName User controller name. It may be set by

the user. Max string length: 16 charac-
ters.

uint8_t CtrlFlags Internal controller settings. This is a bit
mask for bitwise operations.

0x1 - EEPROM_PRECEDENCE If the flag is set, settings from external
EEPROM override controller settings.

uint8_t Reserved [7] Reserved (7 bytes)
Continued on next page

6.2. Communication protocol specification 205

mDrive User Manual, Release 3.1.2

Table 6.58 – continued from previous page
uint16_t CRC Checksum

Description: Read user’s controller name and internal settings from the FRAM.

6.2.6.28 Command GNVM

Command code (CMD): “gnvm” or 0x6D766E67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (36 bytes)

uint32_t CMD Command
uint32_t UserData User data. It may be set by the user. Each

element of the array stores only 32 bits of
user data. This is important on systems
where an int type contains more than 4
bytes. For example, on all amd64 sys-
tems.

uint8_t Reserved [2] Reserved (2 bytes)
uint16_t CRC Checksum

Description: Read user data from FRAM.

6.2.6.29 Command GPID

Command code (CMD): “gpid” or 0x64697067.

Request: (4 bytes)

uint32_t CMD Command

Answer: (48 bytes)

uint32_t CMD Command
uint16_t KpU Proportional gain for voltage PID routine
uint16_t KiU Integral gain for voltage PID routine
uint16_t KdU Differential gain for voltage PID routine
float Kpf Proportional gain for BLDC position PID

routine
float Kif Integral gain for BLDC position PID rou-

tine
float Kdf Differential gain for BLDC position PID

routine
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Read PID settings. This function reads the structure containing a set of motor PID settings stored in
the controller’s memory. These settings specify the behavior of the PID routine for the positioner. These factors

6.2. Communication protocol specification 206

mDrive User Manual, Release 3.1.2

are slightly different for different positioners. All boards are supplied with the standard set of PID settings in the
controller’s flash memory.

6.2.6.30 Command GPWD

Command code (CMD): “gpwd” or 0x64777067.

Request: (4 bytes)

uint32_t CMD Command

Answer: (36 bytes)

uint32_t CMD Command
int8_t UserPassword Password for the web-page that the user

can change with a USB command or via
web-page.

uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

Description: Read the password. Manufacturer only. This function reads the user password for the device’s web-page.

6.2.6.31 Command GPWR

Command code (CMD): “gpwr” or 0x72777067.

Request: (4 bytes)

uint32_t CMD Command

Answer: (20 bytes)

uint32_t CMD Command
uint8_t HoldCurrent Holding current, as percent of the nomi-

nal current. Range: 0..100.
uint16_t CurrReductDelay Time in ms from going to STOP state to

the end of current reduction.
uint16_t PowerOffDelay Time in s from going to STOP state to

turning power off.
uint16_t CurrentSetTime Time in ms to reach the nominal current.
uint8_t PowerFlags Flags with parameters of power control.

This is a bit mask for bitwise operations.
0x1 - POWER_REDUCT_ENABLED Current reduction is enabled after Cur-

rReductDelay if this flag is set.
0x2 - POWER_OFF_ENABLED Power off is enabled after PowerOffDe-

lay if this flag is set.
0x4 - POWER_SMOOTH_CURRENT Current ramp-up/down are performed

smoothly during current_set_time if this
flag is set.

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Description: Read settings of step motor power control. Used with a stepper motor only.

6.2. Communication protocol specification 207

mDrive User Manual, Release 3.1.2

6.2.6.32 Command GSEC

Command code (CMD): “gsec” or 0x63657367.

Request: (4 bytes)

uint32_t CMD Command

Answer: (28 bytes)

uint32_t CMD Command
uint16_t LowUpwrOff Lower voltage limit to turn off the motor,

in tens of mV.
uint16_t CriticalIpwr Maximum motor current which triggers

ALARM state, in mA.
uint16_t CriticalUpwr Maximum motor voltage which triggers

ALARM state, in tens of mV.
uint16_t CriticalT Maximum temperature, which triggers

ALARM state, in tenths of degrees Cel-
sius.

uint16_t CriticalIusb Maximum USB current which triggers
ALARM state, in mA.

uint16_t CriticalUusb Maximum USB voltage which triggers
ALARM state, in tens of mV.

uint16_t MinimumUusb Minimum USB voltage which triggers
ALARM state, in tens of mV.

uint8_t Flags Critical parameter flags. This is a bit
mask for bitwise operations.

0x1 - ALARM_ON_DRIVER_OVERHEATING If this flag is set, enter the alarm state on
the driver overheat signal.

0x2 - LOW_UPWR_PROTECTION If this flag is set, turn off the motor when
the voltage is lower than LowUpwrOff.

0x4 - H_BRIDGE_ALERT If this flag is set then turn off the power
unit with a signal problem in one of the
transistor bridge.

0x8 - ALARM_ON_BORDERS_SWAP_MISSET If this flag is set, enter Alarm state on
borders swap misset

0x10 - ALARM_FLAGS_STICKING If this flag is set, only a STOP command
can turn all alarms to 0

0x20 - USB_BREAK_RECONNECT If this flag is set, the USB brake recon-
nect module will be enabled

0x40 - ALARM_WINDING_MISMATCH If this flag is set, enter Alarm state when
windings mismatch

0x80 - ALARM_ENGINE_RESPONSE If this flag is set, enter the Alarm state on
response of the engine control action

uint8_t Reserved [7] Reserved (7 bytes)
uint16_t CRC Checksum

Description: Read protection settings.

6.2.6.33 Command GSNI

Command code (CMD): “gsni” or 0x696E7367.

6.2. Communication protocol specification 208

mDrive User Manual, Release 3.1.2

Request: (4 bytes)

uint32_t CMD Command

Answer: (28 bytes)

uint32_t CMD Command
uint8_t SyncInFlags Input synchronization flags. This is a bit

mask for bitwise operations.
0x1 - SYNCIN_ENABLED Synchronization in mode is enabled if

this flag is set.
0x2 - SYNCIN_INVERT Trigger on falling edge if flag is set, on

rising edge otherwise.
0x4 - SYNCIN_GOTOPOSITION The engine is going to the position spec-

ified in Position and uPosition if this flag
is set. And it is shifting on the Position
and uPosition if this flag is unset

uint16_t ClutterTime Input synchronization pulse dead time
(us).

int32_t Position Desired position or shift (full steps)
int16_t uPosition The fractional part of a position or shift

in microsteps. It is used with a stepper
motor. The microstep size and the range
of valid values for this field depend on
the selected step division mode (see the
MicrostepMode field in engine_settings).

uint32_t Speed Target speed (for stepper motor: steps/s,
for DC: rpm). Range: 0..100000.

uint8_t uSpeed Target speed in microsteps/s. Microstep
size and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings). Used a stepper mo-
tor only.

uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Read input synchronization settings. This function reads the structure with a set of input synchronization
settings, modes, periods and flags that specify the behavior of input synchronization. All boards are supplied with the
standard set of these settings.

6.2.6.34 Command GSNO

Command code (CMD): “gsno” or 0x6F6E7367.

Request: (4 bytes)

uint32_t CMD Command

Answer: (16 bytes)

6.2. Communication protocol specification 209

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint8_t SyncOutFlags Output synchronization flags. This is a

bit mask for bitwise operations.
0x1 - SYNCOUT_ENABLED The synchronization out pin follows the

synchronization logic if the flag is set.
Otherwise, it is governed by the SYN-
COUT_STATE flag.

0x2 - SYNCOUT_STATE When the output state is fixed by the neg-
ative SYNCOUT_ENABLED flag, the
pin state is in accordance with this flag
state.

0x4 - SYNCOUT_INVERT The low level is active if the flag is set.
Otherwise, the high level is active.

0x8 - SYNCOUT_IN_STEPS Use motor steps or encoder pulses in-
stead of milliseconds for output pulse
generation if the flag is set.

0x10 - SYNCOUT_ONSTART Generate a synchronization pulse when
movement starts.

0x20 - SYNCOUT_ONSTOP Generate a synchronization pulse when
movement stops.

0x40 - SYNCOUT_ONPERIOD Generate a synchronization pulse every
SyncOutPeriod encoder pulses.

uint16_t SyncOutPulseSteps This value specifies the duration of out-
put pulse. It is measured microsec-
onds when SYNCOUT_IN_STEPS flag
is cleared or in encoder pulses or mo-
tor steps when SYNCOUT_IN_STEPS
is set.

uint16_t SyncOutPeriod This value specifies the number of en-
coder pulses or steps between two out-
put synchronization pulses when SYN-
COUT_ONPERIOD is set.

uint32_t Accuracy This is the neighborhood around the tar-
get coordinates, every point in which is
treated as the target position. Getting in
these points cause the stop impulse.

uint8_t uAccuracy This is the neighborhood around the tar-
get coordinates in microsteps (used with
a stepper motor only). The microstep
size and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings).

uint16_t CRC Checksum

Description: Read output synchronization settings. This function reads the structure containing a set of output syn-
chronization settings, modes, periods and flags that specify the behavior of output synchronization. All boards are
supplied with the standard set of these settings.

6.2.6.35 Command GSTI

Command code (CMD): “gsti” or 0x69747367.

6.2. Communication protocol specification 210

mDrive User Manual, Release 3.1.2

Request: (4 bytes)

uint32_t CMD Command

Answer: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read stage information from the EEPROM.

6.2.6.36 Command GSTS

Command code (CMD): “gsts” or 0x73747367.

Request: (4 bytes)

uint32_t CMD Command

Answer: (70 bytes)

uint32_t CMD Command
float LeadScrewPitch Lead screw pitch (mm). Data type: float.
int8_t Units Units for MaxSpeed and TravelRange

fields of the structure (steps, degrees,
mm, . . .). Max string length: 8 chars.

float MaxSpeed Maximum speed (Units/c). Data type:
float.

float TravelRange Travel range (Units). Data type: float.
float SupplyVoltageMin Minimum supply voltage (V). Data type:

float.
float SupplyVoltageMax Maximum supply voltage (V). Data type:

float.
float MaxCurrentConsumption Maximum current consumption (A).

Data type: float.
float HorizontalLoadCapacity Horizontal load capacity (kg). Data type:

float.
float VerticalLoadCapacity Vertical load capacity (kg). Data type:

float.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Description: Deprecated. Read stage settings from the EEPROM.

6.2.6.37 Command GURT

Command code (CMD): “gurt” or 0x74727567.

6.2. Communication protocol specification 211

mDrive User Manual, Release 3.1.2

Request: (4 bytes)

uint32_t CMD Command

Answer: (16 bytes)

uint32_t CMD Command
uint32_t Speed UART baudrate (in bauds)
uint16_t UARTSetupFlags UART setup flags. This is a bit mask for

bitwise operations.
0x3 - UART_PARITY_BITS Bits of the parity.
0x0 - UART_PARITY_BIT_EVEN Parity bit 1, if even
0x1 - UART_PARITY_BIT_ODD Parity bit 1, if odd
0x2 - UART_PARITY_BIT_SPACE Parity bit always 0
0x3 - UART_PARITY_BIT_MARK Parity bit always 1
0x4 - UART_PARITY_BIT_USE None parity
0x8 - UART_STOP_BIT If set - one stop bit, else two stop bit

uint8_t Reserved [4] Reserved (4 bytes)
uint16_t CRC Checksum

Description: Read UART settings. This function reads the structure containing UART settings.

6.2.6.38 Command SACC

Command code (CMD): “sacc” or 0x63636173.

Request: (114 bytes)

uint32_t CMD Command
int8_t MagneticBrakeInfo The manufacturer and the part number

of magnetic brake, the maximum string
length is 24 characters.

float MBRatedVoltage Rated voltage for controlling the mag-
netic brake (V). Data type: float.

float MBRatedCurrent Rated current for controlling the mag-
netic brake (A). Data type: float.

float MBTorque Retention moment (mN m). Data type:
float.

uint32_t MBSettings Flags of magnetic brake settings. This is
a bit mask for bitwise operations.

0x1 - MB_AVAILABLE If the flag is set, the magnetic brake is
available

0x2 - MB_POWERED_HOLD If this flag is set, the magnetic brake is on
when powered

int8_t TemperatureSensorInfo The manufacturer and the part number
of the temperature sensor, the maximum
string length: 24 characters.

float TSMin The minimum measured temperature
(degrees Celsius) Data type: float.

float TSMax The maximum measured temperature
(degrees Celsius) Data type: float.

Continued on next page

6.2. Communication protocol specification 212

mDrive User Manual, Release 3.1.2

Table 6.79 – continued from previous page
float TSGrad The temperature gradient (V/degrees

Celsius). Data type: float.
uint32_t TSSettings Flags of temperature sensor settings.

This is a bit mask for bitwise operations.
0x7 - TS_TYPE_BITS Bits of the temperature sensor type
0x0 - TS_TYPE_UNKNOWN Unknown type of sensor
0x1 - TS_TYPE_THERMOCOUPLE Thermocouple
0x2 - TS_TYPE_SEMICONDUCTOR The semiconductor temperature sensor
0x8 - TS_AVAILABLE If the flag is set, the temperature sensor is

available
uint32_t LimitSwitchesSettings Flags of limit switches settings. This is a

bit mask for bitwise operations.
0x1 - LS_ON_SW1_AVAILABLE If the flag is set, the limit switch con-

nected to pin SW1 is available
0x2 - LS_ON_SW2_AVAILABLE If the flag is set, the limit switch con-

nected to pin SW2 is available
0x4 - LS_SW1_ACTIVE_LOW If the flag is set, the limit switch con-

nected to pin SW1 is triggered by a low
level on the pin

0x8 - LS_SW2_ACTIVE_LOW If the flag is set, the limit switch con-
nected to pin SW2 is triggered by a low
level on pin

0x10 - LS_SHORTED If the flag is set, the limit switches are
shorted

uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set additional accessories’ information to the EEPROM. Can be used by the manufacturer
only.

6.2.6.39 Command SBRK

Command code (CMD): “sbrk” or 0x6B726273.

Request: (25 bytes)

uint32_t CMD Command
uint16_t t1 Time in ms between turning on motor

power and turning off the brake.
uint16_t t2 Time in ms between the brake turning off

and moving readiness. All moving com-
mands will execute after this interval.

uint16_t t3 Time in ms between motor stop and the
brake turning on.

uint16_t t4 Time in ms between turning on the brake
and turning off motor power.

Continued on next page

6.2. Communication protocol specification 213

mDrive User Manual, Release 3.1.2

Table 6.81 – continued from previous page
uint8_t BrakeFlags Flags. This is a bit mask for bitwise op-

erations.
0x1 - BRAKE_ENABLED Brake control is enabled if this flag is set.
0x2 - BRAKE_ENG_PWROFF Brake turns the stepper motor power off

if this flag is set.
uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set brake control settings.

6.2.6.40 Command SCAL

Command code (CMD): “scal” or 0x6C616373.

Request: (118 bytes)

uint32_t CMD Command
float CSS1_A Scaling factor for the analog measure-

ments of the A winding current.
float CSS1_B Offset for the analog measurements of

the A winding current.
float CSS2_A Scaling factor for the analog measure-

ments of the B winding current.
float CSS2_B Offset for the analog measurements of

the B winding current.
float FullCurrent_A Scaling factor for the analog measure-

ments of the full current.
float FullCurrent_B Offset for the analog measurements of

the full current.
uint8_t Reserved [88] Reserved (88 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set calibration settings. Manufacturer only. This function sends the structure with calibration set-
tings to the controller’s memory. These settings are used to convert bare ADC values to winding currents in mA
and the full current in mA. Parameters are grouped into pairs, XXX_A and XXX_B, representing linear equa-
tion coefficients. The first one is the slope, the second one is the constant term. Thus, XXX_Current[mA] =
XXX_A[mA/ADC]XXX_ADC_CODE[ADC] + XXX_B[mA].

6.2.6.41 Command SCTL

Command code (CMD): “sctl” or 0x6C746373.

Request: (93 bytes)

6.2. Communication protocol specification 214

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint32_t MaxSpeed Array of speeds (full step) used with the

joystick and the button control. Range:
0..100000.

uint8_t uMaxSpeed Array of speeds (in microsteps) used with
the joystick and the button control. The
microstep size and the range of valid val-
ues for this field depend on the selected
step division mode (see the Microstep-
Mode field in engine_settings).

uint16_t Timeout Timeout[i] is timeout in ms. After that,
max_speed[i+1] is applied. It’s used with
the button control only.

uint16_t MaxClickTime Maximum click time (in ms). Until the
expiration of this time, the first speed
isn’t applied.

uint16_t Flags Control flags. This is a bit mask for bit-
wise operations.

0x3 - CONTROL_MODE_BITS Bits to control the engine by joystick or
buttons.

0x0 - CONTROL_MODE_OFF Control is disabled.
0x1 - CONTROL_MODE_JOY Control by joystick.
0x2 - CONTROL_MODE_LR Control by left/right buttons.
0x4 - CONTROL_BTN_LEFT_PUSHED_OPEN Pushed left button corresponds to the

open contact if this flag is set.
0x8 - CONTROL_BTN_RIGHT_PUSHED_OPEN Pushed right button corresponds to open

contact if this flag is set.
int32_t DeltaPosition Position Shift (delta) (full step)
int16_t uDeltaPosition Fractional part of the shift in micro steps.

It’s used with a stepper motor only. The
microstep size and the range of valid val-
ues for this field depend on the selected
step division mode (see the Microstep-
Mode field in engine_settings).

uint8_t Reserved [9] Reserved (9 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Read motor control settings. In case of CTL_MODE=1, joystick motor control is enabled. In this mode,
the joystick is maximally displaced, the engine tends to move at MaxSpeed[i]. i=0 if another value hasn’t been set at
the previous usage. To change the speed index ‘i’, use the buttons. In case of CTL_MODE=2, the motor is controlled
by the left/right buttons. When you click on the button, the motor starts moving in the appropriate direction at a speed
MaxSpeed[0]. After Timeout[i], motor moves at speed MaxSpeed[i+1]. At the transition between MaxSpeed[i] and
MaxSpeed[i+1] the motor just accelerates/decelerates as usual.

6.2.6.42 Command SCTP

Command code (CMD): “sctp” or 0x70746373.

Request: (18 bytes)

6.2. Communication protocol specification 215

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint8_t CTPMinError The minimum difference between the

SM position in steps and the encoder
position that causes the setting of the
STATE_CTP_ERROR flag. Measured in
steps.

uint8_t CTPFlags This is a bit mask for bitwise operations.
0x1 - CTP_ENABLED The position control is enabled if the flag

is set.
0x2 - CTP_BASE The position control is based on the revo-

lution sensor if this flag is set; otherwise,
it is based on the encoder.

0x4 - CTP_ALARM_ON_ERROR Set ALARM on mismatch if the flag is
set.

0x8 - REV_SENS_INV Typically, the sensor is active when it
is at 0, and inversion makes active at 1.
That is, if you do not invert, it is normal
logic - 0 is the activation.

0x10 - CTP_ERROR_CORRECTION Correct errors that appear when slippage
occurs if the flag is set. It works only
with the encoder. Incompatible with the
flag CTP_ALARM_ON_ERROR.

uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set control position settings (used with stepper motor only). When controlling the step motor with the
encoder (CTP_BASE=0), it is possible to detect the loss of steps. The controller knows the number of steps per revo-
lution (GENG::StepsPerRev) and the encoder resolution (GFBS::IPT). When the control is enabled (CTP_ENABLED
is set), the controller stores the current position in the steps of SM and the current position of the encoder. Next, the
encoder position is converted into steps at each step, and if the difference between the current position in steps and the
encoder position is greater than CTPMinError, the flag STATE_CTP_ERROR is set. Alternatively, the stepper motor
may be controlled with the speed sensor (CTP_BASE 1). In this mode, at the active edges of the input clock, the
controller stores the current value of steps. Then, at each revolution, the controller checks how many steps have been
passed. When the difference is over the CTPMinError, the STATE_CTP_ERROR flag is set.

6.2.6.43 Command SEAS

Command code (CMD): “seas” or 0x73616573.

Request: (54 bytes)

uint32_t CMD Command
uint16_t stepcloseloop_Kw Mixing ratio of the actual and set speed,

range [0, 100], default value 50.
uint16_t stepcloseloop_Kp_low Position feedback in the low-speed zone,

range [0, 65535], default value 1000.
Continued on next page

6.2. Communication protocol specification 216

mDrive User Manual, Release 3.1.2

Table 6.89 – continued from previous page
uint16_t stepcloseloop_Kp_high Position feedback in the high-speed

zone, range [0, 65535], default value 33.
uint8_t Reserved [42] Reserved (42 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set engine advanced settings.

6.2.6.44 Command SEDS

Command code (CMD): “seds” or 0x73646573.

Request: (26 bytes)

uint32_t CMD Command
uint8_t BorderFlags Border flags, specify types of borders and

motor behavior at borders. This is a bit
mask for bitwise operations.

0x1 - BORDER_IS_ENCODER Borders are fixed by predetermined en-
coder values, if set; borders are placed on
limit switches, if not set.

0x2 - BORDER_STOP_LEFT The motor should stop on the left border.
0x4 - BORDER_STOP_RIGHT Motor should stop on right border.
0x8 - BORDERS_SWAP_MISSET_DETECTION Motor should stop on both borders. Need

to save motor then wrong border settings
is set

uint8_t EnderFlags Flags specify electrical behavior of limit
switches like order and pulled positions.
This is a bit mask for bitwise operations.

0x1 - ENDER_SWAP First limit switch on the right side, if set;
otherwise on the left side.

0x2 - ENDER_SW1_ACTIVE_LOW 1 - Limit switch connected to pin SW1 is
triggered by a low level on pin.

0x4 - ENDER_SW2_ACTIVE_LOW 1 - Limit switch connected to pin SW2 is
triggered by a low level on pin.

int32_t LeftBorder Left border position, used if BOR-
DER_IS_ENCODER flag is set.

int16_t uLeftBorder Left border position in microsteps (used
with stepper motor only). The microstep
size and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings).

int32_t RightBorder Right border position, used if BOR-
DER_IS_ENCODER flag is set.

Continued on next page

6.2. Communication protocol specification 217

mDrive User Manual, Release 3.1.2

Table 6.91 – continued from previous page
int16_t uRightBorder Right border position in microsteps.

Used with a stepper motor only. The mi-
crostep size and the range of valid values
for this field depend on the selected step
division mode (see the MicrostepMode
field in engine_settings).

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set border and limit switches settings.

6.2.6.45 Command SEIO

Command code (CMD): “seio” or 0x6F696573.

Request: (18 bytes)

uint32_t CMD Command
uint8_t EXTIOSetupFlags Configuration flags of the external I-O.

This is a bit mask for bitwise operations.
0x1 - EXTIO_SETUP_OUTPUT EXTIO works as output if the flag is set,

works as input otherwise.
0x2 - EXTIO_SETUP_INVERT Interpret EXTIO state inverted if the flag

is set. A falling front is treated as an input
event and a low logic level as an active
state.

uint8_t EXTIOModeFlags Flags mode settings external I-O. This is
a bit mask for bitwise operations.

0xf - EXTIO_SETUP_MODE_IN_BITS Bits of the behavior selector when the
signal on input goes to the active state.

0x0 - EXTIO_SETUP_MODE_IN_NOP Do nothing.
0x1 - EXTIO_SETUP_MODE_IN_STOP Issue STOP command, ceasing the en-

gine movement.
0x2 - EXTIO_SETUP_MODE_IN_PWOF Issue PWOF command, powering off all

engine windings.
0x3 - EXTIO_SETUP_MODE_IN_MOVR Issue MOVR command with last used

settings.
0x4 - EXTIO_SETUP_MODE_IN_HOME Issue HOME command.
0x5 - EXTIO_SETUP_MODE_IN_ALARM Set Alarm when the signal goes to the ac-

tive state.
0xf0 - EXTIO_SETUP_MODE_OUT_BITS Bits of the output behavior selection.
0x0 - EXTIO_SETUP_MODE_OUT_OFF EXTIO pin always set in inactive state.
0x10 - EXTIO_SETUP_MODE_OUT_ON EXTIO pin always set in active state.
0x20 - EXTIO_SETUP_MODE_OUT_MOVING EXTIO pin stays active during moving

state.
0x30 - EXTIO_SETUP_MODE_OUT_ALARM EXTIO pin stays active during the alarm

state.
Continued on next page

6.2. Communication protocol specification 218

mDrive User Manual, Release 3.1.2

Table 6.93 – continued from previous page
0x40 - EXTIO_SETUP_MODE_OUT_MOTOR_ON EXTIO pin stays active when windings

are powered.
uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set EXTIO settings. This function sends the structure with a set of EXTIO settings to the controller’s
memory. By default, input events are signaled through a rising front, and output states are signaled by a high logic
state.

6.2.6.46 Command SEMF

Command code (CMD): “semf” or 0x666D6573.

Request: (48 bytes)

uint32_t CMD Command
float L Motor winding inductance.
float R Motor winding resistance.
float Km Electromechanical ratio of the motor.
uint8_t BackEMFFlags Auto-settings stepper motor flags. This is

a bit mask for bitwise operations.
0x1 - BACK_EMF_INDUCTANCE_AUTO Flag of auto-detection of inductance of

windings of the engine.
0x2 - BACK_EMF_RESISTANCE_AUTO Flag of auto-detection of resistance of

windings of the engine.
0x4 - BACK_EMF_KM_AUTO Flag of auto-detection of electromechan-

ical coefficient of the engine.
uint8_t Reserved [29] Reserved (29 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set electromechanical coefficients. The settings are different for different stepper motors. Please set
new settings when you change the motor.

6.2.6.47 Command SENG

Command code (CMD): “seng” or 0x676E6573.

Request: (34 bytes)

uint32_t CMD Command
Continued on next page

6.2. Communication protocol specification 219

mDrive User Manual, Release 3.1.2

Table 6.97 – continued from previous page
uint16_t NomVoltage Rated voltage in tens of mV. Con-

troller will keep the voltage drop
on motor below this value if EN-
GINE_LIMIT_VOLT flag is set (used
with DC only).

uint16_t NomCurrent Rated current (in mA). Controller will
keep current consumed by motor below
this value if ENGINE_LIMIT_CURR
flag is set. Range: 15..8000

uint32_t NomSpeed Nominal (maximum) speed (in whole
steps/s or rpm for DC and stepper mo-
tor as a master encoder). Controller
will keep motor shaft RPM below this
value if ENGINE_LIMIT_RPM flag is
set. Range: 1..100000.

uint8_t uNomSpeed The fractional part of a nominal speed
in microsteps (is only used with stepper
motor). Microstep size and the range
of valid values for this field depend on
selected step division mode (see Mi-
crostepMode field in engine_settings).

uint16_t EngineFlags Set of flags specify motor shaft move-
ment algorithm and a list of limitations.
This is a bit mask for bitwise operations.

0x1 - ENGINE_REVERSE Reverse flag. It determines motor shaft
rotation direction that corresponds to
feedback counts increasing. If not set
(default), motor shaft rotation direc-
tion under positive voltage corresponds
to feedback counts increasing and vice
versa. Change it if you see that positive
directions on motor and feedback are op-
posite.

0x2 - ENGINE_CURRENT_AS_RMS Engine current meaning flag. If the flag
is unset, then the engine’s current value
is interpreted as the maximum amplitude
value. If the flag is set, then the engine
current value is interpreted as the root-
mean-square current value (for stepper)
or as the current value calculated from
the maximum heat dissipation (BLDC).

0x4 - ENGINE_MAX_SPEED Max speed flag. If it is set, the engine
uses the maximum speed achievable with
the present engine settings as its nominal
speed.

0x8 - ENGINE_ANTIPLAY Play compensation flag. If it is set, the
engine makes backlash (play) compensa-
tion and reaches the predetermined posi-
tion accurately at low speed.

0x10 - ENGINE_ACCEL_ON Acceleration enable flag. If it set, motion
begins with acceleration and ends with
deceleration.

Continued on next page

6.2. Communication protocol specification 220

mDrive User Manual, Release 3.1.2

Table 6.97 – continued from previous page
0x20 - ENGINE_LIMIT_VOLT Maximum motor voltage limit enable

flag (is only used with DC motor).
0x40 - ENGINE_LIMIT_CURR Maximum motor current limit enable flag

(is only used with DC motor).
0x80 - ENGINE_LIMIT_RPM Maximum motor speed limit enable flag.

int16_t Antiplay Number of pulses or steps for backlash
(play) compensation procedure. Used if
ENGINE_ANTIPLAY flag is set.

uint8_t MicrostepMode Settings of microstep mode (Used with
stepper motor only). the microstep size
and the range of valid values for this
field depend on the selected step divi-
sion mode (see MicrostepMode field in
engine_settings). This is a bit mask for
bitwise operations.

0x1 - MICROSTEP_MODE_FULL Full step mode.
0x2 - MICROSTEP_MODE_FRAC_2 1/2-step mode.
0x3 - MICROSTEP_MODE_FRAC_4 1/4-step mode.
0x4 - MICROSTEP_MODE_FRAC_8 1/8-step mode.
0x5 - MICROSTEP_MODE_FRAC_16 1/16-step mode.
0x6 - MICROSTEP_MODE_FRAC_32 1/32-step mode.
0x7 - MICROSTEP_MODE_FRAC_64 1/64-step mode.
0x8 - MICROSTEP_MODE_FRAC_128 1/128-step mode.
0x9 - MICROSTEP_MODE_FRAC_256 1/256-step mode.

uint16_t StepsPerRev Number of full steps per revolution
(Used with stepper motor only). Range:
1..65535.

uint8_t Reserved [12] Reserved (12 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set engine settings. This function sends a structure with a set of engine settings to the controller’s
memory. These settings specify the motor shaft movement algorithm, list of limitations and rated characteristics. Use
it when you change the motor, encoder, positioner, etc. Please note that wrong engine settings may lead to device
malfunction, which can cause irreversible damage to the board.

6.2.6.48 Command SENI

Command code (CMD): “seni” or 0x696E6573.

Request: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)

Continued on next page

6.2. Communication protocol specification 221

mDrive User Manual, Release 3.1.2

Table 6.99 – continued from previous page
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set encoder information to the EEPROM. Can be used by the manufacturer only.

6.2.6.49 Command SENS

Command code (CMD): “sens” or 0x736E6573.

Request: (54 bytes)

uint32_t CMD Command
float MaxOperatingFrequency Maximum operation frequency (kHz).

Data type: float.
float SupplyVoltageMin Minimum supply voltage (V). Data type:

float.
float SupplyVoltageMax Maximum supply voltage (V). Data type:

float.
float MaxCurrentConsumption Max current consumption (mA). Data

type: float.
uint32_t PPR The number of counts per revolution
uint32_t EncoderSettings Encoder settings flags. This is a bit mask

for bitwise operations.
0x1 - ENCSET_DIFFERENTIAL_OUTPUT If the flag is set, the encoder has differen-

tial output, otherwise single-ended out-
put

0x4 - ENCSET_PUSHPULL_OUTPUT If the flag is set the encoder has push-pull
output, otherwise open drain output

0x10 - ENCSET_INDEXCHANNEL_PRESENT If the flag is set, the encoder has an extra
indexed channel

0x40 - ENCSET_REVOLUTIONSENSOR_PRESENT If the flag is set, the encoder has the rev-
olution sensor

0x100 - ENCSET_REVOLUTIONSENSOR_ACTIVE_HIGHIf the flag is set, the revolution sensor’s
active state is high logic state; otherwise,
the active state is low logic state

uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set encoder settings to the EEPROM. Can be used by the manufacturer only.

6.2.6.50 Command SENT

Command code (CMD): “sent” or 0x746E6573.

Request: (14 bytes)

6.2. Communication protocol specification 222

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint8_t EngineType Engine type. This is a bit mask for bit-

wise operations.
0x0 - ENGINE_TYPE_NONE A value that shouldn’t be used.
0x1 - ENGINE_TYPE_DC DC motor.
0x2 - ENGINE_TYPE_2DC 2 DC motors.
0x3 - ENGINE_TYPE_STEP Step motor.
0x4 - ENGINE_TYPE_TEST Duty cycle are fixed. Used only manu-

facturer.
0x5 - ENGINE_TYPE_BRUSHLESS Brushless motor.

uint8_t DriverType Driver type. This is a bit mask for bitwise
operations.

0x1 - DRIVER_TYPE_DISCRETE_FET Driver with discrete FET keys. Default
option.

0x2 - DRIVER_TYPE_INTEGRATE Driver with integrated IC.
0x3 - DRIVER_TYPE_EXTERNAL External driver.

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set engine type and driver type.

6.2.6.51 Command SEST

Command code (CMD): “sest” or 0x74736573.

Request: (46 bytes)

uint32_t CMD Command
uint16_t Param1
uint8_t Reserved [38] Reserved (38 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set extended settings. Currently, it is not in use.

6.2.6.52 Command SFBS

Command code (CMD): “sfbs” or 0x73626673.

Request: (18 bytes)

uint32_t CMD Command
Continued on next page

6.2. Communication protocol specification 223

mDrive User Manual, Release 3.1.2

Table 6.107 – continued from previous page
uint16_t IPS The number of encoder counts per shaft

revolution. Range: 1..655535. The field
is obsolete, it is recommended to write 0
to IPS and use the extended CountsPer-
Turn field. You may need to update the
controller firmware to the latest version.

uint8_t FeedbackType Type of feedback. This is a bit mask for
bitwise operations.

0x1 - FEEDBACK_ENCODER Feedback by encoder.
0x4 - FEEDBACK_EMF Feedback by EMF.
0x5 - FEEDBACK_NONE Feedback is absent.
0x6 - FEEDBACK_ENCODER_MEDIATED Feedback by encoder mediated by me-

chanical transmission (for example lead-
screw).

uint8_t FeedbackFlags Flags. This is a bit mask for bitwise op-
erations.

0x1 - FEEDBACK_ENC_REVERSE Reverse count of encoder.
0xc0 - FEEDBACK_ENC_TYPE_BITS Bits of the encoder type.
0x0 - FEEDBACK_ENC_TYPE_AUTO Auto detect encoder type.
0x40 - FEEDBACK_ENC_TYPE_SINGLE_ENDED Single-ended encoder.
0x80 - FEEDBACK_ENC_TYPE_DIFFERENTIAL Differential encoder.

uint32_t CountsPerTurn The number of encoder counts per shaft
revolution. Range: 1..4294967295. To
use the CountsPerTurn field, write 0 in
the IPS field, otherwise the value from
the IPS field will be used.

uint8_t Reserved [4] Reserved (4 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Feedback settings.

6.2.6.53 Command SGRI

Command code (CMD): “sgri” or 0x69726773.

Request: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

6.2. Communication protocol specification 224

mDrive User Manual, Release 3.1.2

uint32_t CMD Command

Description: Deprecated. Set gear information to the EEPROM. Can be used by the manufacturer only.

6.2.6.54 Command SGRS

Command code (CMD): “sgrs” or 0x73726773.

Request: (58 bytes)

uint32_t CMD Command
float ReductionIn Input reduction coefficient. (Output

= (ReductionOut / ReductionIn) Input)
Data type: float.

float ReductionOut Output reduction coefficient. (Output
= (ReductionOut / ReductionIn) Input)
Data type: float.

float RatedInputTorque Maximum continuous torque (N m).
Data type: float.

float RatedInputSpeed Maximum speed on the input shaft (rpm).
Data type: float.

float MaxOutputBacklash Output backlash of the reduction gear
(degree). Data type: float.

float InputInertia Equivalent input gear inertia (g cm2).
Data type: float.

float Efficiency Reduction gear efficiency (%). Data
type: float.

uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set gear settings to the EEPROM. Can be used by the manufacturer only.

6.2.6.55 Command SHOM

Command code (CMD): “shom” or 0x6D6F6873.

Request: (33 bytes)

uint32_t CMD Command
uint32_t FastHome Speed used for first motion (full steps).

Range: 0..100000.
uint8_t uFastHome Fractional part of the speed for first mo-

tion, microsteps. The microstep size
and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings).

Continued on next page

6.2. Communication protocol specification 225

mDrive User Manual, Release 3.1.2

Table 6.113 – continued from previous page
uint32_t SlowHome Speed used for second motion (full

steps). Range: 0..100000.
uint8_t uSlowHome Part of the speed for second motion, mi-

crosteps. The microstep size and the
range of valid values for this field de-
pend on the selected step division mode
(see the MicrostepMode field in en-
gine_settings).

int32_t HomeDelta Distance from break point (full steps).
int16_t uHomeDelta Fractional part of the delta distance, mi-

crosteps. The microstep size and the
range of valid values for this field de-
pend on the selected step division mode
(see the MicrostepMode field in en-
gine_settings).

uint16_t HomeFlags Set of flags specifies the direction and
stopping conditions. This is a bit mask
for bitwise operations.

0x1 - HOME_DIR_FIRST The flag defines the direction of the 1st
motion after execution of the home com-
mand. The direction is to the right if the
flag is set, and to the left otherwise.

0x2 - HOME_DIR_SECOND The flag defines the direction of the 2nd
motion. The direction is to the right if the
flag is set, and to the left otherwise.

0x4 - HOME_MV_SEC_EN Use the second phase of calibration to the
home position, if set; otherwise the sec-
ond phase is skipped.

0x8 - HOME_HALF_MV If the flag is set, the stop signals are ig-
nored during the first half-turn of the sec-
ond movement.

0x30 - HOME_STOP_FIRST_BITS Bits of the first stop selector.
0x10 - HOME_STOP_FIRST_REV First motion stops by revolution sensor.
0x20 - HOME_STOP_FIRST_SYN First motion stops by synchronization in-

put.
0x30 - HOME_STOP_FIRST_LIM First motion stops by limit switch.
0xc0 - HOME_STOP_SECOND_BITS Bits of the second stop selector.
0x40 - HOME_STOP_SECOND_REV Second motion stops by revolution sen-

sor.
0x80 - HOME_STOP_SECOND_SYN Second motion stops by synchronization

input.
0xc0 - HOME_STOP_SECOND_LIM Second motion stops by limit switch.
0x100 - HOME_USE_FAST Use the fast algorithm of calibration to

the home position, if set; otherwise the
traditional algorithm.

uint8_t Reserved [9] Reserved (9 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

6.2. Communication protocol specification 226

mDrive User Manual, Release 3.1.2

uint32_t CMD Command

Description: Set home settings. This function sends home position structure to the controller’s memory.

6.2.6.56 Command SHSI

Command code (CMD): “shsi” or 0x69736873.

Request: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set hall sensor information to the EEPROM. Can be used by the manufacturer only.

6.2.6.57 Command SHSS

Command code (CMD): “shss” or 0x73736873.

Request: (50 bytes)

uint32_t CMD Command
float MaxOperatingFrequency Maximum operation frequency (kHz).

Data type: float.
float SupplyVoltageMin Minimum supply voltage (V). Data type:

float.
float SupplyVoltageMax Maximum supply voltage (V). Data type:

float.
float MaxCurrentConsumption Maximum current consumption (mA).

Data type: float.
uint32_t PPR The number of counts per revolution
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set hall sensor settings to the EEPROM. Can be used by the manufacturer only.

6.2. Communication protocol specification 227

mDrive User Manual, Release 3.1.2

6.2.6.58 Command SJOY

Command code (CMD): “sjoy” or 0x796F6A73.

Request: (22 bytes)

uint32_t CMD Command
uint16_t JoyLowEnd Joystick lower end position. Range:

0..10000.
uint16_t JoyCenter Joystick center position. Range:

0..10000.
uint16_t JoyHighEnd Joystick upper end position. Range:

0..10000.
uint8_t ExpFactor Exponential nonlinearity factor.
uint8_t DeadZone Joystick dead zone.
uint8_t JoyFlags Joystick control flags. This is a bit mask

for bitwise operations.
0x1 - JOY_REVERSE Joystick action is reversed. The joystick

deviation to the upper values corresponds
to negative speed and vice versa.

uint8_t Reserved [7] Reserved (7 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set joystick position. If joystick position falls outside DeadZone limits, a movement begins. The speed
is defined by the joystick’s position in the range of the DeadZone limit to the maximum deviation. Joystick positions
inside DeadZone limits correspond to zero speed (a soft stop of motion), and positions beyond Low and High limits
correspond to MaxSpeed[i] or -MaxSpeed[i] (see command SCTL), where i = 0 by default and can be changed with
the left/right buttons (see command SCTL). If the next speed in the list is zero (both integer and microstep parts), the
button press is ignored. The first speed in the list shouldn’t be zero.

6.2.6.59 Command SMOV

Command code (CMD): “smov” or 0x766F6D73.

Request: (30 bytes)

uint32_t CMD Command
uint32_t Speed Target speed (for stepper motor: steps/s,

for DC: rpm). Range: 0..100000.
uint8_t uSpeed Target speed in microstep fractions/s.

The microstep size and the range of valid
values for this field depend on the se-
lected step division mode (see the Mi-
crostepMode field in engine_settings).
Used with a stepper motor only.

uint16_t Accel Motor shaft acceleration, steps/s^2 (step-
per motor) or RPM/s (DC). Range:
1..65535.

Continued on next page

6.2. Communication protocol specification 228

mDrive User Manual, Release 3.1.2

Table 6.121 – continued from previous page
uint16_t Decel Motor shaft deceleration, steps/s^2 (step-

per motor) or RPM/s (DC). Range:
1..65535.

uint32_t AntiplaySpeed Speed in antiplay mode, full steps/s
(stepper motor) or RPM (DC). Range:
0..100000.

uint8_t uAntiplaySpeed Speed in antiplay mode, microsteps/s.
The microstep size and the range of valid
values for this field depend on the se-
lected step division mode (see the Mi-
crostepMode field in engine_settings).
Used with a stepper motor only.

uint8_t MoveFlags Flags that control movement settings.
This is a bit mask for bitwise operations.

0x1 - RPM_DIV_1000 This flag indicates that the operating
speed specified in the command is set
in milliRPM. Applicable only for EN-
CODER feedback mode and only for
BLDC motors.

uint8_t Reserved [9] Reserved (9 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Movement settings set command (speed, acceleration, threshold, etc.).

6.2.6.60 Command SMTI

Command code (CMD): “smti” or 0x69746D73.

Request: (70 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set motor information to the EEPROM. Can be used by the manufacturer only.

6.2.6.61 Command SMTS

Command code (CMD): “smts” or 0x73746D73.

6.2. Communication protocol specification 229

mDrive User Manual, Release 3.1.2

Request: (112 bytes)

uint32_t CMD Command
uint8_t MotorType Motor type. This is a bit mask for bitwise

operations.
0x0 - MOTOR_TYPE_UNKNOWN Unknown type of engine
0x1 - MOTOR_TYPE_STEP Step engine
0x2 - MOTOR_TYPE_DC DC engine
0x3 - MOTOR_TYPE_BLDC BLDC engine

uint8_t ReservedField Reserved
uint16_t Poles Number of pole pairs for DC or BLDC

motors or number of steps per rotation
for stepper motors.

uint16_t Phases Number of phases for BLDC motors.
float NominalVoltage Nominal voltage on winding (B). Data

type: float
float NominalCurrent Maximum direct current in winding for

DC and BLDC engines, nominal current
in windings for stepper motors (A). Data
type: float.

float NominalSpeed Not used. Nominal speed (rpm). Used
for DC and BLDC engines. Data type:
float.

float NominalTorque Nominal torque (mN m). Used for DC
and BLDC engines. Data type: float.

float NominalPower Nominal power (W). Used for DC and
BLDC engines. Data type: float.

float WindingResistance Resistance of windings for DC engines,
of each of two windings for stepper mo-
tors, or of each of three windings for
BLDC engines (Ohm). Data type: float.

float WindingInductance Inductance of windings for DC engines,
inductance of each of two windings for
stepper motors, or inductance of each of
three windings for BLDC engines (mH).
Data type: float.

float RotorInertia Rotor inertia (g cm2). Data type: float.
float StallTorque Torque hold position for a stepper motor

or torque at a motionless rotor for other
types of engines (mN m). Data type:
float.

float DetentTorque Holding torque position with unpowered
windings (mN m). Data type: float.

float TorqueConstant Torque constant that determines the pro-
portionality constant between the maxi-
mum rotor torque and current flowing in
the winding (mN m / A). Used mainly for
DC motors. Data type: float.

Continued on next page

6.2. Communication protocol specification 230

mDrive User Manual, Release 3.1.2

Table 6.125 – continued from previous page
float SpeedConstant Velocity constant, which determines the

value or the amplitude of the induced
voltage on the motion of DC or BLDC
motors (rpm / V) or stepper motors
(steps/s / V). Data type: float.

float SpeedTorqueGradient Speed torque gradient (rpm / mN m).
Data type: float.

float MechanicalTimeConstant Mechanical time constant (ms). Data
type: float.

float MaxSpeed The maximum speed for stepper motors
(steps/s) or DC and BLDC motors (rmp).
Data type: float.

float MaxCurrent The maximum current in the winding
(A). Data type: float.

float MaxCurrentTime Safe duration of overcurrent in the wind-
ing (ms). Data type: float.

float NoLoadCurrent The current consumption in idle mode
(A). Used for DC and BLDC motors.
Data type: float.

float NoLoadSpeed Idle speed (rpm). Used for DC and
BLDC motors. Data type: float.

uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set motor settings to the EEPROM. Can be used by the manufacturer only.

6.2.6.62 Command SNET

Command code (CMD): “snet” or 0x74656E73.

Request: (38 bytes)

uint32_t CMD Command
uint8_t DHCPEnabled Indicates the method to get the IP-

address. It can be either 0 (static) or 1
(DHCP).

uint8_t IPv4Address IP-address of the device in format
x.x.x.x.

uint8_t SubnetMask The mask of the subnet in format x.x.x.x.
uint8_t DefaultGateway Default value of the gateway in format

x.x.x.x.
uint8_t Reserved [19] Reserved (19 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

6.2. Communication protocol specification 231

mDrive User Manual, Release 3.1.2

uint32_t CMD Command

Description: Set network settings. Manufacturer only. This function sets the desired network settings.

6.2.6.63 Command SNME

Command code (CMD): “snme” or 0x656D6E73.

Request: (30 bytes)

uint32_t CMD Command
int8_t PositionerName User’s positioner name. It can be set by a

user. Max string length: 16 characters.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Write the user’s stage name to EEPROM.

6.2.6.64 Command SNMF

Command code (CMD): “snmf” or 0x666D6E73.

Request: (30 bytes)

uint32_t CMD Command
int8_t ControllerName User controller name. It may be set by

the user. Max string length: 16 charac-
ters.

uint8_t CtrlFlags Internal controller settings. This is a bit
mask for bitwise operations.

0x1 - EEPROM_PRECEDENCE If the flag is set, settings from external
EEPROM override controller settings.

uint8_t Reserved [7] Reserved (7 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Write user’s controller name and internal settings to the FRAM.

6.2.6.65 Command SNVM

Command code (CMD): “snvm” or 0x6D766E73.

Request: (36 bytes)

6.2. Communication protocol specification 232

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint32_t UserData User data. It may be set by the user. Each

element of the array stores only 32 bits of
user data. This is important on systems
where an int type contains more than 4
bytes. For example, on all amd64 sys-
tems.

uint8_t Reserved [2] Reserved (2 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Write user data into the FRAM.

6.2.6.66 Command SPID

Command code (CMD): “spid” or 0x64697073.

Request: (48 bytes)

uint32_t CMD Command
uint16_t KpU Proportional gain for voltage PID routine
uint16_t KiU Integral gain for voltage PID routine
uint16_t KdU Differential gain for voltage PID routine
float Kpf Proportional gain for BLDC position PID

routine
float Kif Integral gain for BLDC position PID rou-

tine
float Kdf Differential gain for BLDC position PID

routine
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set PID settings. This function sends the structure with a set of PID factors to the controller’s memory.
These settings specify the behavior of the PID routine for the positioner. These factors are slightly different for
different positioners. All boards are supplied with the standard set of PID settings in the controller’s flash memory.
Please use it for loading new PID settings when you change positioner. Please note that wrong PID settings lead to
device malfunction.

6.2.6.67 Command SPWD

Command code (CMD): “spwd” or 0x64777073.

Request: (36 bytes)

6.2. Communication protocol specification 233

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
int8_t UserPassword Password for the web-page that the user

can change with a USB command or via
web-page.

uint8_t Reserved [10] Reserved (10 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Sets the password. Manufacturer only. This function sets the user password for the device’s web-page.

6.2.6.68 Command SPWR

Command code (CMD): “spwr” or 0x72777073.

Request: (20 bytes)

uint32_t CMD Command
uint8_t HoldCurrent Holding current, as percent of the nomi-

nal current. Range: 0..100.
uint16_t CurrReductDelay Time in ms from going to STOP state to

the end of current reduction.
uint16_t PowerOffDelay Time in s from going to STOP state to

turning power off.
uint16_t CurrentSetTime Time in ms to reach the nominal current.
uint8_t PowerFlags Flags with parameters of power control.

This is a bit mask for bitwise operations.
0x1 - POWER_REDUCT_ENABLED Current reduction is enabled after Cur-

rReductDelay if this flag is set.
0x2 - POWER_OFF_ENABLED Power off is enabled after PowerOffDe-

lay if this flag is set.
0x4 - POWER_SMOOTH_CURRENT Current ramp-up/down are performed

smoothly during current_set_time if this
flag is set.

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set settings of step motor power control. Used with a stepper motor only.

6.2.6.69 Command SSEC

Command code (CMD): “ssec” or 0x63657373.

Request: (28 bytes)

6.2. Communication protocol specification 234

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint16_t LowUpwrOff Lower voltage limit to turn off the motor,

in tens of mV.
uint16_t CriticalIpwr Maximum motor current which triggers

ALARM state, in mA.
uint16_t CriticalUpwr Maximum motor voltage which triggers

ALARM state, in tens of mV.
uint16_t CriticalT Maximum temperature, which triggers

ALARM state, in tenths of degrees Cel-
sius.

uint16_t CriticalIusb Maximum USB current which triggers
ALARM state, in mA.

uint16_t CriticalUusb Maximum USB voltage which triggers
ALARM state, in tens of mV.

uint16_t MinimumUusb Minimum USB voltage which triggers
ALARM state, in tens of mV.

uint8_t Flags Critical parameter flags. This is a bit
mask for bitwise operations.

0x1 - ALARM_ON_DRIVER_OVERHEATING If this flag is set, enter the alarm state on
the driver overheat signal.

0x2 - LOW_UPWR_PROTECTION If this flag is set, turn off the motor when
the voltage is lower than LowUpwrOff.

0x4 - H_BRIDGE_ALERT If this flag is set then turn off the power
unit with a signal problem in one of the
transistor bridge.

0x8 - ALARM_ON_BORDERS_SWAP_MISSET If this flag is set, enter Alarm state on
borders swap misset

0x10 - ALARM_FLAGS_STICKING If this flag is set, only a STOP command
can turn all alarms to 0

0x20 - USB_BREAK_RECONNECT If this flag is set, the USB brake recon-
nect module will be enabled

0x40 - ALARM_WINDING_MISMATCH If this flag is set, enter Alarm state when
windings mismatch

0x80 - ALARM_ENGINE_RESPONSE If this flag is set, enter the Alarm state on
response of the engine control action

uint8_t Reserved [7] Reserved (7 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set protection settings.

6.2.6.70 Command SSNI

Command code (CMD): “ssni” or 0x696E7373.

Request: (28 bytes)

uint32_t CMD Command
Continued on next page

6.2. Communication protocol specification 235

mDrive User Manual, Release 3.1.2

Table 6.143 – continued from previous page
uint8_t SyncInFlags Input synchronization flags. This is a bit

mask for bitwise operations.
0x1 - SYNCIN_ENABLED Synchronization in mode is enabled if

this flag is set.
0x2 - SYNCIN_INVERT Trigger on falling edge if flag is set, on

rising edge otherwise.
0x4 - SYNCIN_GOTOPOSITION The engine is going to the position spec-

ified in Position and uPosition if this flag
is set. And it is shifting on the Position
and uPosition if this flag is unset

uint16_t ClutterTime Input synchronization pulse dead time
(us).

int32_t Position Desired position or shift (full steps)
int16_t uPosition The fractional part of a position or shift

in microsteps. It is used with a stepper
motor. The microstep size and the range
of valid values for this field depend on
the selected step division mode (see the
MicrostepMode field in engine_settings).

uint32_t Speed Target speed (for stepper motor: steps/s,
for DC: rpm). Range: 0..100000.

uint8_t uSpeed Target speed in microsteps/s. Microstep
size and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings). Used a stepper mo-
tor only.

uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set input synchronization settings. This function sends the structure with a set of input synchronization
settings that specify the behavior of input synchronization to the controller’s memory. All boards are supplied with the
standard set of these settings.

6.2.6.71 Command SSNO

Command code (CMD): “ssno” or 0x6F6E7373.

Request: (16 bytes)

uint32_t CMD Command
uint8_t SyncOutFlags Output synchronization flags. This is a

bit mask for bitwise operations.
0x1 - SYNCOUT_ENABLED The synchronization out pin follows the

synchronization logic if the flag is set.
Otherwise, it is governed by the SYN-
COUT_STATE flag.

Continued on next page

6.2. Communication protocol specification 236

mDrive User Manual, Release 3.1.2

Table 6.145 – continued from previous page
0x2 - SYNCOUT_STATE When the output state is fixed by the neg-

ative SYNCOUT_ENABLED flag, the
pin state is in accordance with this flag
state.

0x4 - SYNCOUT_INVERT The low level is active if the flag is set.
Otherwise, the high level is active.

0x8 - SYNCOUT_IN_STEPS Use motor steps or encoder pulses in-
stead of milliseconds for output pulse
generation if the flag is set.

0x10 - SYNCOUT_ONSTART Generate a synchronization pulse when
movement starts.

0x20 - SYNCOUT_ONSTOP Generate a synchronization pulse when
movement stops.

0x40 - SYNCOUT_ONPERIOD Generate a synchronization pulse every
SyncOutPeriod encoder pulses.

uint16_t SyncOutPulseSteps This value specifies the duration of out-
put pulse. It is measured microsec-
onds when SYNCOUT_IN_STEPS flag
is cleared or in encoder pulses or mo-
tor steps when SYNCOUT_IN_STEPS
is set.

uint16_t SyncOutPeriod This value specifies the number of en-
coder pulses or steps between two out-
put synchronization pulses when SYN-
COUT_ONPERIOD is set.

uint32_t Accuracy This is the neighborhood around the tar-
get coordinates, every point in which is
treated as the target position. Getting in
these points cause the stop impulse.

uint8_t uAccuracy This is the neighborhood around the tar-
get coordinates in microsteps (used with
a stepper motor only). The microstep
size and the range of valid values for this
field depend on the selected step divi-
sion mode (see the MicrostepMode field
in engine_settings).

uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set output synchronization settings. This function sends the structure with a set of output synchroniza-
tion settings that specify the behavior of output synchronization to the controller’s memory. All boards are supplied
with the standard set of these settings.

6.2.6.72 Command SSTI

Command code (CMD): “ssti” or 0x69747373.

Request: (70 bytes)

6.2. Communication protocol specification 237

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
int8_t Manufacturer Manufacturer. Max string length: 16

chars.
int8_t PartNumber Series and PartNumber. Max string

length: 24 chars.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set stage information to the EEPROM. Can be used by the manufacturer only.

6.2.6.73 Command SSTS

Command code (CMD): “ssts” or 0x73747373.

Request: (70 bytes)

uint32_t CMD Command
float LeadScrewPitch Lead screw pitch (mm). Data type: float.
int8_t Units Units for MaxSpeed and TravelRange

fields of the structure (steps, degrees,
mm, . . .). Max string length: 8 chars.

float MaxSpeed Maximum speed (Units/c). Data type:
float.

float TravelRange Travel range (Units). Data type: float.
float SupplyVoltageMin Minimum supply voltage (V). Data type:

float.
float SupplyVoltageMax Maximum supply voltage (V). Data type:

float.
float MaxCurrentConsumption Maximum current consumption (A).

Data type: float.
float HorizontalLoadCapacity Horizontal load capacity (kg). Data type:

float.
float VerticalLoadCapacity Vertical load capacity (kg). Data type:

float.
uint8_t Reserved [24] Reserved (24 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Deprecated. Set stage settings to the EEPROM. Can be used by the manufacturer only

6.2.6.74 Command SURT

Command code (CMD): “surt” or 0x74727573.

Request: (16 bytes)

6.2. Communication protocol specification 238

mDrive User Manual, Release 3.1.2

uint32_t CMD Command
uint32_t Speed UART baudrate (in bauds)
uint16_t UARTSetupFlags UART setup flags. This is a bit mask for

bitwise operations.
0x3 - UART_PARITY_BITS Bits of the parity.
0x0 - UART_PARITY_BIT_EVEN Parity bit 1, if even
0x1 - UART_PARITY_BIT_ODD Parity bit 1, if odd
0x2 - UART_PARITY_BIT_SPACE Parity bit always 0
0x3 - UART_PARITY_BIT_MARK Parity bit always 1
0x4 - UART_PARITY_BIT_USE None parity
0x8 - UART_STOP_BIT If set - one stop bit, else two stop bit

uint8_t Reserved [4] Reserved (4 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Set UART settings. This function sends the structure with UART settings to the controller’s memory.

6.2.6.75 Command ASIA

Command code (CMD): “asia” or 0x61697361.

Request: (22 bytes)

uint32_t CMD Command
int32_t Position Desired position or shift (full steps)
int16_t uPosition The fractional part of a position or shift

in microsteps. Used with stepper motor
only. The microstep size and the range
of valid values for this field depend on
the selected step division mode (see the
MicrostepMode field in engine_settings).

uint32_t Time Time period in which you want to
achieve the desired position in microsec-
onds.

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: This command adds one element to the FIFO command buffer. Commands are executed at an input
clock pulse. Each synchronization pulse launches the action described in SSNI if the buffer is empty. Otherwise,
the pulse launches the first command from the FIFO. In the latter case, the command is erased from the buffer. The
number of remaining empty buffer elements can be found in the GETS.

6.2.6.76 Command CLFR

Command code (CMD): “clfr” or 0x72666C63.

6.2. Communication protocol specification 239

mDrive User Manual, Release 3.1.2

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: The command to clear the controller’s FRAM. The memory is cleared by filling the whole memory bytes
with 0x00. After cleaning, the controller restarts. There is no response to this command.

6.2.6.77 Command CONN

Command code (CMD): “conn” or 0x6E6E6F63.

Request: (14 bytes)

uint32_t CMD Command
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Answer: (15 bytes)

uint32_t CMD Command
uint8_t sresult Command result.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Command to open a ISP session (in-system programming) when downloading the firmware. Result
= RESULT_OK if the command loader. Result = RESULT_SOFT_ERROR if an error occurred at the time of the
command. The Result is not available through the library command_update_firmware(). The function processes it
internally.

6.2.6.78 Command DBGR

Command code (CMD): “dbgr” or 0x72676264.

Request: (4 bytes)

uint32_t CMD Command

Answer: (142 bytes)

uint32_t CMD Command
uint8_t DebugData Arbitrary debug data.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Read data from firmware for debug purpose. Manufacturer only. Its use depends on context, firmware
version and previous history.

6.2. Communication protocol specification 240

mDrive User Manual, Release 3.1.2

6.2.6.79 Command DBGW

Command code (CMD): “dbgw” or 0x77676264.

Request: (142 bytes)

uint32_t CMD Command
uint8_t DebugData Arbitrary debug data.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Write data to firmware for debug purpose. Manufacturer only.

6.2.6.80 Command DISC

Command code (CMD): “disc” or 0x63736964.

Request: (14 bytes)

uint32_t CMD Command
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Answer: (15 bytes)

uint32_t CMD Command
uint8_t sresult Command result.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Command to close the ISP session (in-system programming) when loading firmware. Result = RE-
SULT_OK if the command loader. Result = RESULT_HARD_ERROR if a hardware error occurred at the time of the
command. Result = RESULT_SOFT_ERROR if a software error occurred at the time of the command. The Result is
not available through the library command_update_firmware(). The function processes it internally.

6.2.6.81 Command EERD

Command code (CMD): “eerd” or 0x64726565.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Read settings from the stage’s EEPROM to the controller’s RAM. This operation is performed automat-
ically at the connection of the stage with an EEPROM to the controller. Can be used by the manufacturer only.

6.2. Communication protocol specification 241

mDrive User Manual, Release 3.1.2

6.2.6.82 Command EESV

Command code (CMD): “eesv” or 0x76736565.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Save settings from the controller’s RAM to the stage’s EEPROM. Can be used by the manufacturer only.

6.2.6.83 Command GBLV

Command code (CMD): “gblv” or 0x766C6267.

Request: (4 bytes)

uint32_t CMD Command

Answer: (10 bytes)

uint32_t CMD Command
uint8_t Major Bootloader major version number
uint8_t Minor Bootloader minor version number
uint16_t Release Bootloader release version number
uint16_t CRC Checksum

Description: Read the controller’s bootloader version.

6.2.6.84 Command GETC

Command code (CMD): “getc” or 0x63746567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (38 bytes)

uint32_t CMD Command
int16_t WindingVoltageA In case of a step motor, it contains the

voltage across the winding A (in tens of
mV); in case of a brushless motor, it con-
tains the voltage on the first coil; in case
of a DC motor, it contains the only wind-
ing current.

Continued on next page

6.2. Communication protocol specification 242

mDrive User Manual, Release 3.1.2

Table 6.172 – continued from previous page
int16_t WindingVoltageB In case of a step motor, it contains the

voltage across the winding B (in tens of
mV); in case of a brushless motor, it con-
tains the voltage on the second winding;
and in case of a DC motor, this field is
not used.

int16_t WindingVoltageC In case of a brushless motor, it contains
the voltage on the third winding (in tens
of mV); in the case of a step motor and a
DC motor, the field is not used.

int16_t WindingCurrentA In case of a step motor, it contains the
current in the winding A (in mA); in case
of a brushless motor, it contains the cur-
rent in the winding A; and in case of a
DC motor, it contains the only winding
current.

int16_t WindingCurrentB In case of a step motor, it contains the
current in the winding B (in mA); in case
of a brushless motor, it contains the cur-
rent in the winding B; and in case of a
DC motor, the field is not used.

int16_t WindingCurrentC In case of a brushless motor, it contains
the current in the winding C (in mA); in
case of a step motor and a DC motor, the
field is not used.

uint16_t Pot Analog input value, dimensionless.
Range: 0..10000

uint16_t Joy The joystick position, dimensionless.
Range: 0..10000

int16_t DutyCycle PWM duty cycle.
uint8_t Reserved [14] Reserved (14 bytes)
uint16_t CRC Checksum

Description: Return device electrical parameters, useful for charts. A useful function that fills the structure with a
snapshot of the controller voltages and currents.

6.2.6.85 Command GETI

Command code (CMD): “geti” or 0x69746567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (36 bytes)

uint32_t CMD Command
int8_t Manufacturer Manufacturer
int8_t ManufacturerId Manufacturer id
int8_t ProductDescription Product description

Continued on next page

6.2. Communication protocol specification 243

mDrive User Manual, Release 3.1.2

Table 6.174 – continued from previous page
uint8_t Major The major number of the hardware ver-

sion.
uint8_t Minor The minor number of the hardware ver-

sion.
uint16_t Release Release version.
uint8_t Reserved [12] Reserved (12 bytes)
uint16_t CRC Checksum

Description: Return device information. It’s available in the firmware and the bootloader.

6.2.6.86 Command GETM

Command code (CMD): “getm” or 0x6D746567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (216 bytes)

uint32_t CMD Command
int32_t Speed Current speed in microsteps per second

(whole steps are recalculated consider-
ing the current step division mode) or en-
coder counts per second.

int32_t Error Current error in microsteps per second
(whole steps are recalculated consider-
ing the current step division mode) or en-
coder counts per second.

uint32_t Length Length of actual data in buffer.
uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Description: A command to read the data buffer to build a speed graph and a speed error graph. Filling the buffer
starts with the command ‘start_measurements’. The buffer holds 25 points; the points are taken with a period of 1 ms.
To create a robust system, read data every 20 ms. If the buffer is full, it is recommended to repeat the readings every
5 ms until the buffer again becomes filled with 20 points. To stop measurements just stop reading data. After buffer
overflow measurements will stop automatically.

6.2.6.87 Command GETS

Command code (CMD): “gets” or 0x73746567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (54 bytes)

uint32_t CMD Command
Continued on next page

6.2. Communication protocol specification 244

mDrive User Manual, Release 3.1.2

Table 6.178 – continued from previous page
uint8_t MoveSts Move state. This is a bit mask for bitwise

operations.
0x1 - MOVE_STATE_MOVING This flag indicates that the controller

is trying to move the motor. Don’t
use this flag to wait for the comple-
tion of the movement command. Use
the MVCMD_RUNNING flag from the
MvCmdSts field instead.

0x2 - MOVE_STATE_TARGET_SPEED Target speed is reached, if flag set.
0x4 - MOVE_STATE_ANTIPLAY Motor is playing compensation, if flag

set.
uint8_t MvCmdSts Move command state. This is a bit mask

for bitwise operations.
0x3f - MVCMD_NAME_BITS Move command bit mask.
0x0 - MVCMD_UKNWN Unknown command.
0x1 - MVCMD_MOVE Command move.
0x2 - MVCMD_MOVR Command movr.
0x3 - MVCMD_LEFT Command left.
0x4 - MVCMD_RIGHT Command rigt.
0x5 - MVCMD_STOP Command stop.
0x6 - MVCMD_HOME Command home.
0x7 - MVCMD_LOFT Command loft.
0x8 - MVCMD_SSTP Command soft stop.
0x40 - MVCMD_ERROR Finish state (1 - move command has fin-

ished with an error, 0 - move command
has finished correctly). This flag makes
sense when MVCMD_RUNNING sig-
nals movement completion.

0x80 - MVCMD_RUNNING Move command state (0 - move com-
mand has finished, 1 - move command is
being executed).

uint8_t PWRSts Power state of the stepper motor (used
with stepper motor only). This is a bit
mask for bitwise operations.

0x0 - PWR_STATE_UNKNOWN Unknown state, should never happen.
0x1 - PWR_STATE_OFF Motor windings are disconnected from

the driver.
0x3 - PWR_STATE_NORM Motor windings are powered by nominal

current.
0x4 - PWR_STATE_REDUCT Motor windings are powered by reduced

current to lower power consumption.
0x5 - PWR_STATE_MAX Motor windings are powered by the max-

imum current driver can provide at this
voltage.

uint8_t EncSts Encoder state. This is a bit mask for bit-
wise operations.

0x0 - ENC_STATE_ABSENT Encoder is absent.
0x1 - ENC_STATE_UNKNOWN Encoder state is unknown.
0x2 - ENC_STATE_MALFUNC Encoder is connected and malfunction-

ing.
Continued on next page

6.2. Communication protocol specification 245

mDrive User Manual, Release 3.1.2

Table 6.178 – continued from previous page
0x3 - ENC_STATE_REVERS Encoder is connected and operational but

counts in other direction.
0x4 - ENC_STATE_OK Encoder is connected and working prop-

erly.
uint8_t WindSts Windings state. This is a bit mask for bit-

wise operations.
0x0 - WIND_A_STATE_ABSENT Winding A is disconnected.
0x1 - WIND_A_STATE_UNKNOWN Winding A state is unknown.
0x2 - WIND_A_STATE_MALFUNC Winding A is short-circuited.
0x3 - WIND_A_STATE_OK Winding A is connected and working

properly.
0x0 - WIND_B_STATE_ABSENT Winding B is disconnected.
0x10 - WIND_B_STATE_UNKNOWN Winding B state is unknown.
0x20 - WIND_B_STATE_MALFUNC Winding B is short-circuited.
0x30 - WIND_B_STATE_OK Winding B is connected and working

properly.
int32_t CurPosition Current position.
int16_t uCurPosition Step motor shaft position in microsteps.

The microstep size and the range of valid
values for this field depend on the se-
lected step division mode (see the Mi-
crostepMode field in engine_settings).
Used with stepper motors only.

int64_t EncPosition Current encoder position.
int32_t CurSpeed Motor shaft speed in steps/s or rpm.
int16_t uCurSpeed Fractional part of motor shaft speed in

microsteps. The microstep size and the
range of valid values for this field de-
pend on the selected step division mode
(see the MicrostepMode field in en-
gine_settings). Used with stepper motors
only.

int16_t Ipwr Engine current, mA.
int16_t Upwr Power supply voltage, tens of mV.
int16_t Iusb USB current, mA.
int16_t Uusb USB voltage, tens of mV.
int16_t CurT Temperature, tenths of degrees Celsius.
uint32_t Flags A set of flags specifies the motor shaft

movement algorithm and a list of limita-
tions. This is a bit mask for bitwise oper-
ations.

0x3f - STATE_CONTR Flags of controller states.
0x1 - STATE_ERRC Command error encountered. The com-

mand received is not in the list of con-
troller known commands. The most pos-
sible reason is the outdated firmware.

Continued on next page

6.2. Communication protocol specification 246

mDrive User Manual, Release 3.1.2

Table 6.178 – continued from previous page
0x2 - STATE_ERRD Data integrity error encountered. The

data inside the command and its CRC
code do not correspond. Therefore, the
data can’t be considered valid. This
error may be caused by EMI in the
UART/RS232 interface.

0x4 - STATE_ERRV Value error encountered. The values in
the command can’t be applied without
correction because they fall outside the
valid range. Corrected values were used
instead of the original ones.

0x10 - STATE_EEPROM_CONNECTED EEPROM with settings is connected.
The built-in stage profile is uploaded
from the EEPROM memory chip if the
EEPROM_PRECEDENCE flag is set, al-
lowing you to connect various stages to
the controller with automatic setup.

0x20 - STATE_IS_HOMED Calibration performed. This means that
the relative position scale is calibrated
against a hardware absolute position sen-
sor, like a limit switch. Drops after loss
of calibration, like harsh stops and possi-
bly skipped steps.

0x1b3ffc0 - STATE_SECUR Security flags.
0x40 - STATE_ALARM The controller is in an alarm state, indi-

cating that something dangerous has hap-
pened. Most commands are ignored in
this state. To reset the flag, a STOP com-
mand must be issued.

0x80 - STATE_CTP_ERROR Control position error (is only used with
stepper motor). The flag is set when the
encoder position and step position are too
far apart.

0x100 - STATE_POWER_OVERHEAT Power driver overheat. Motor control
is disabled until some cooldown occurs.
This should not happen with boxed ver-
sions of the controller. This may happen
with the bare-board version of the con-
troller with a custom radiator. Redesign
your radiator.

0x200 - STATE_CONTROLLER_OVERHEAT Controller overheat.
0x400 - STATE_OVERLOAD_POWER_VOLTAGE Power voltage exceeds safe limit.
0x800 - STATE_OVERLOAD_POWER_CURRENT Power current exceeds safe limit.
0x1000 - STATE_OVERLOAD_USB_VOLTAGE USB voltage exceeds safe limit.
0x2000 - STATE_LOW_USB_VOLTAGE USB voltage is insufficient for normal

operation.
0x4000 - STATE_OVERLOAD_USB_CURRENT USB current exceeds safe limit.
0x8000 - STATE_BORDERS_SWAP_MISSET Engine stuck at the wrong edge.
0x10000 - STATE_LOW_POWER_VOLTAGE Power voltage is lower than Low Voltage

Protection limit
Continued on next page

6.2. Communication protocol specification 247

mDrive User Manual, Release 3.1.2

Table 6.178 – continued from previous page
0x20000 - STATE_H_BRIDGE_FAULT Signal from the driver that fault hap-

pened
0x100000 - STATE_WINDING_RES_MISMATCH The difference between winding resis-

tances is too large. This usually happens
with a damaged stepper motor with par-
tially short-circuited windings.

0x200000 - STATE_ENCODER_FAULT Signal from the encoder that fault hap-
pened

0x800000 - STATE_ENGINE_RESPONSE_ERROR Error response of the engine control ac-
tion. Motor control algorithm failure
means that it can’t make the correct deci-
sions with the feedback data it receives.
A single failure may be caused by a me-
chanical problem. A repeating failure
can be caused by incorrect motor set-
tings.

0x1000000 - STATE_EXTIO_ALARM The error is caused by the external EX-
TIO input signal.

uint32_t GPIOFlags A set of flags of GPIO states. This is a
bit mask for bitwise operations.

0xffff - STATE_DIG_SIGNAL Flags of digital signals.
0x1 - STATE_RIGHT_EDGE Engine stuck at the right edge.
0x2 - STATE_LEFT_EDGE Engine stuck at the left edge.
0x4 - STATE_BUTTON_RIGHT Button ‘right’ state (1 if pressed).
0x8 - STATE_BUTTON_LEFT Button ‘left’ state (1 if pressed).
0x10 - STATE_GPIO_PINOUT External GPIO works as out if the flag is

set; otherwise, it works as in.
0x20 - STATE_GPIO_LEVEL State of external GPIO pin.
0x200 - STATE_BRAKE State of Brake pin. Flag ‘1’ - if the

pin state brake is not powered (brake is
clamped), ‘0’ - if the pin state brake is
powered (brake is unclamped).

0x400 - STATE_REV_SENSOR State of Revolution sensor pin.
0x800 - STATE_SYNC_INPUT State of Sync input pin.
0x1000 - STATE_SYNC_OUTPUT State of Sync output pin.
0x2000 - STATE_ENC_A State of encoder A pin.
0x4000 - STATE_ENC_B State of encoder B pin.

uint8_t CmdBufFreeSpace This field is a service field. It shows
the number of free synchronization chain
buffer cells.

uint8_t Reserved [4] Reserved (4 bytes)
uint16_t CRC Checksum

Description: Return device state. A useful function that fills the structure with a snapshot of the controller state,
including speed, position, and boolean flags.

6.2.6.88 Command GFWV

Command code (CMD): “gfwv” or 0x76776667.

Request: (4 bytes)

6.2. Communication protocol specification 248

mDrive User Manual, Release 3.1.2

uint32_t CMD Command

Answer: (10 bytes)

uint32_t CMD Command
uint8_t Major Firmware major version number
uint8_t Minor Firmware minor version number
uint16_t Release Firmware release version number
uint16_t CRC Checksum

Description: Read the controller’s firmware version.

6.2.6.89 Command GOFW

Command code (CMD): “gofw” or 0x77666F67.

Request: (4 bytes)

uint32_t CMD Command

Answer: (15 bytes)

uint32_t CMD Command
uint8_t sresult Result of the command.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Command initiates the transfer of control to firmware. This command is also available in the firmware
for compatibility. Manufacturer only. Result = RESULT_OK, if the transition from the loader to the firmware is
possible. After the response to this command, the transition is executed. Result = RESULT_NO_FIRMWARE if the
firmware is not found. Result = RESULT_ALREADY_IN_FIRMWARE if this command is called from the firmware.

6.2.6.90 Command GPOS

Command code (CMD): “gpos” or 0x736F7067.

Request: (4 bytes)

uint32_t CMD Command

Answer: (26 bytes)

uint32_t CMD Command
int32_t Position The position of the whole steps in the en-

gine
int16_t uPosition Microstep position is only used with

stepper motors. Microstep size and the
range of valid values for this field depend
on the selected step division mode (see
MicrostepMode field in engine_settings).

int64_t EncPosition Encoder position.
Continued on next page

6.2. Communication protocol specification 249

mDrive User Manual, Release 3.1.2

Table 6.184 – continued from previous page
uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Description: Reads the value position in steps and microsteps for stepper motor and encoder steps for all engines.

6.2.6.91 Command GSER

Command code (CMD): “gser” or 0x72657367.

Request: (4 bytes)

uint32_t CMD Command

Answer: (10 bytes)

uint32_t CMD Command
uint32_t SerialNumber Board serial number.
uint16_t CRC Checksum

Description: Read device serial number.

6.2.6.92 Command GUID

Command code (CMD): “guid” or 0x64697567.

Request: (4 bytes)

uint32_t CMD Command

Answer: (40 bytes)

uint32_t CMD Command
uint32_t UniqueID0 Unique ID 0.
uint32_t UniqueID1 Unique ID 1.
uint32_t UniqueID2 Unique ID 2.
uint32_t UniqueID3 Unique ID 3.
uint8_t Reserved [18] Reserved (18 bytes)
uint16_t CRC Checksum

Description: This value is unique to each individual device, but is not a random value. Manufacturer only. This unique
device identifier can be used to initiate secure boot processes or as a serial number for USB or other end applications.

6.2.6.93 Command HASF

Command code (CMD): “hasf” or 0x66736168.

Request: (4 bytes)

uint32_t CMD Command

6.2. Communication protocol specification 250

mDrive User Manual, Release 3.1.2

Answer: (15 bytes)

uint32_t CMD Command
uint8_t sresult Result of command.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Check for firmware on device. Manufacturer only. Result = RESULT_NO_FIRMWARE if the firmware
is not found. Result = RESULT_HAS_FIRMWARE if the firmware has been found.

6.2.6.94 Command HOME

Command code (CMD): “home” or 0x656D6F68.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Moving to home position. Moving algorithm: 1) Moves the motor according to the speed FastHome,
uFastHome and flag HOME_DIR_FAST until the limit switch if the HOME_STOP_ENDS flag is set. Or moves
the motor until the input synchronization signal occurs if the flag HOME_STOP_SYNC is set. Or moves until the
revolution sensor signal occurs if the flag HOME_STOP_REV_SN is set. 2) Then moves according to the speed
SlowHome, uSlowHome and flag HOME_DIR_SLOW until the input clock signal occurs if the flag HOME_MV_SEC
is set. If the flag HOME_MV_SEC is reset, skip this step. 3) Then shifts the motor according to the speed FastHome,
uFastHome and the flag HOME_DIR_SLOW by HomeDelta distance, uHomeDelta. See GHOM/SHOM commands’
description for details on home flags. Moving settings can be set by set_home_settings/set_home_settings_calb.

6.2.6.95 Command IRND

Command code (CMD): “irnd” or 0x646E7269.

Request: (4 bytes)

uint32_t CMD Command

Answer: (24 bytes)

uint32_t CMD Command
uint8_t key Random key.
uint8_t Reserved [2] Reserved (2 bytes)
uint16_t CRC Checksum

Description: Read a random number from the controller. Manufacturer only.

6.2. Communication protocol specification 251

mDrive User Manual, Release 3.1.2

6.2.6.96 Command LEFT

Command code (CMD): “left” or 0x7466656C.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Start continuous moving to the left.

6.2.6.97 Command LOFT

Command code (CMD): “loft” or 0x74666F6C.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Upon receiving the command ‘loft’, the engine is shifted from the current position to a distance Antiplay
defined in engine settings. Then moves to the initial position.

6.2.6.98 Command MOVE

Command code (CMD): “move” or 0x65766F6D.

Request: (18 bytes)

uint32_t CMD Command
int32_t Position Desired position (full steps or encoder

counts).
int16_t uPosition The fractional part of a position in mi-

crosteps. The microstep size and the
range of valid values for this field de-
pend on the selected step division mode
(see the MicrostepMode field in en-
gine_settings). Used with stepper motor
only.

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

6.2. Communication protocol specification 252

mDrive User Manual, Release 3.1.2

Description: Move to position. Upon receiving the command ‘move’ the engine starts to move with pre-set parameters
(speed, acceleration, retention), to the point specified by Position and uPosition. uPosition sets the microstep position
of a stepper motor. In the case of DC motor, this field is ignored.

6.2.6.99 Command MOVR

Command code (CMD): “movr” or 0x72766F6D.

Request: (18 bytes)

uint32_t CMD Command
int32_t DeltaPosition Position shift (delta) (full steps or en-

coder counts)
int16_t uDeltaPosition Fractional part of the shift in microsteps.

Used with stepper motor only. The mi-
crostep size and the range of valid values
for this field depend on the selected step
division mode (see the MicrostepMode
field in engine_settings).

uint8_t Reserved [6] Reserved (6 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Shift by a set offset. Upon receiving the command ‘movr’, the engine starts to move with preset param-
eters (speed, acceleration, hold) left or right (depending on the sign of DeltaPosition). It moves by the number of steps
specified in the fields DeltaPosition and uDeltaPosition. uDeltaPosition sets the microstep offset for a stepper motor.
In the case of a DC motor, this field is ignored.

6.2.6.100 Command PWOF

Command code (CMD): “pwof” or 0x666F7770.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Immediately power off the motor regardless its state. Shouldn’t be used during motion as the motor
could be powered on again automatically to continue movement. The command is designed to manually power off the
motor. When automatic power off after stop is required, use the power management system.

6.2.6.101 Command RDAN

Command code (CMD): “rdan” or 0x6E616472.

Request: (4 bytes)

6.2. Communication protocol specification 253

mDrive User Manual, Release 3.1.2

uint32_t CMD Command

Answer: (76 bytes)

uint32_t CMD Command
uint16_t A1Voltage_ADC ‘Voltage on pin 1 winding A’ raw data

from ADC.
uint16_t A2Voltage_ADC ‘Voltage on pin 2 winding A’ raw data

from ADC.
uint16_t B1Voltage_ADC ‘Voltage on pin 1 winding B’ raw data

from ADC.
uint16_t B2Voltage_ADC ‘Voltage on pin 2 winding B’ raw data

from ADC.
uint16_t SupVoltage_ADC ‘Supply voltage of H-bridge’s MOS-

FETs’ raw data from ADC.
uint16_t ACurrent_ADC ‘Winding A current’ raw data from ADC.
uint16_t BCurrent_ADC ‘Winding B current’ raw data from ADC.
uint16_t FullCurrent_ADC ‘Full current’ raw data from ADC.
uint16_t Temp_ADC Voltage from temperature sensor, raw

data from ADC.
uint16_t Joy_ADC Joystick raw data from ADC.
uint16_t Pot_ADC Voltage on analog input, raw data from

ADC
uint16_t L5_ADC USB supply voltage after the current

sense resistor, raw data from ADC.
uint16_t H5_ADC USB Power supply from ADC
int16_t A1Voltage ‘Voltage on pin 1 winding A’ calibrated

data (in tens of mV).
int16_t A2Voltage ‘Voltage on pin 2 winding A’ calibrated

data (in tens of mV).
int16_t B1Voltage ‘Voltage on pin 1 winding B’ calibrated

data (in tens of mV).
int16_t B2Voltage ‘Voltage on pin 2 winding B’ calibrated

data (in tens of mV).
int16_t SupVoltage ‘Supply voltage on the top of H-bridge’s

MOSFETs’ calibrated data (in tens of
mV).

int16_t ACurrent ‘Winding A current’ calibrated data (in
mA).

int16_t BCurrent ‘Winding B current’ calibrated data (in
mA).

int16_t FullCurrent ‘Full current’ calibrated data (in mA).
int16_t Temp Temperature, calibrated data (in tenths of

degrees Celsius).
int16_t Joy Joystick, calibrated data. Range:

0..10000
int16_t Pot Analog input, calibrated data. Range:

0..10000
int16_t L5 USB supply voltage after the current

sense resistor (in tens of mV).
int16_t H5 USB power supply (in tens of mV).

Continued on next page

6.2. Communication protocol specification 254

mDrive User Manual, Release 3.1.2

Table 6.206 – continued from previous page
uint16_t deprecated
int32_t R Motor winding resistance in mOhms (is

only used with stepper motors).
int32_t L Motor winding pseudo inductance in uH

(is only used with stepper motors).
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Read the analog data structure that contains raw analog data from the embedded ADC. This function is
used for device testing and deep recalibration by the manufacturer only.

6.2.6.102 Command READ

Command code (CMD): “read” or 0x64616572.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Read all settings from the controller’s flash memory to the controller’s RAM, replacing previous data in
the RAM.

6.2.6.103 Command RERS

Command code (CMD): “rers” or 0x73726572.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Read important settings (calibration coefficients, etc.) from the controller’s flash memory to the con-
troller’s RAM, replacing previous data in the RAM. Manufacturer only.

6.2.6.104 Command REST

Command code (CMD): “rest” or 0x74736572.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

6.2. Communication protocol specification 255

mDrive User Manual, Release 3.1.2

uint32_t CMD Command

Description: The controller reset command. After the reset, the controller goes into bootloader mode. The command
is added for compatibility with the loader exchange protocol. There is no response to this command.

6.2.6.105 Command RIGT

Command code (CMD): “rigt” or 0x74676972.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Start continuous moving to the right.

6.2.6.106 Command SARS

Command code (CMD): “sars” or 0x73726173.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Save important settings (calibration coefficients, etc.) from the controller’s RAM to the controller’s flash
memory, replacing previous data in the flash memory. Manufacturer only.

6.2.6.107 Command SAVE

Command code (CMD): “save” or 0x65766173.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Save all settings from the controller’s RAM to the controller’s flash memory, replacing previous data in
the flash memory.

6.2. Communication protocol specification 256

mDrive User Manual, Release 3.1.2

6.2.6.108 Command SPOS

Command code (CMD): “spos” or 0x736F7073.

Request: (26 bytes)

uint32_t CMD Command
int32_t Position The position of the whole steps in the en-

gine
int16_t uPosition Microstep position is only used with

stepper motors. Microstep size and the
range of valid values for this field de-
pend on the selected step division mode
(see the MicrostepMode field in en-
gine_settings).

int64_t EncPosition Encoder position.
uint8_t PosFlags Position flags. This is a bit mask for bit-

wise operations.
0x1 - SETPOS_IGNORE_POSITION Will not reload position in

steps/microsteps if this flag is set.
0x2 - SETPOS_IGNORE_ENCODER Will not reload encoder state if this flag

is set.
uint8_t Reserved [5] Reserved (5 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Sets position in steps and microsteps for stepper motor. Sets encoder position for all engines.

6.2.6.109 Command SSER

Command code (CMD): “sser” or 0x72657373.

Request: (50 bytes)

uint32_t CMD Command
uint32_t SN New board serial number.
uint8_t Key Protection key (256 bit).
uint8_t Major The major number of the hardware ver-

sion.
uint8_t Minor The minor number of the hardware ver-

sion.
uint16_t Release Number of edits this release of hardware.
uint8_t Reserved [4] Reserved (4 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

6.2. Communication protocol specification 257

mDrive User Manual, Release 3.1.2

Description: Write device serial number and hardware version to the controller’s flash memory. Along with the new
serial number and hardware version, a ‘Key’ is transmitted. The SN and hardware version are changed and saved when
keys match. Can be used by the manufacturer only.

6.2.6.110 Command SSTP

Command code (CMD): “sstp” or 0x70747373.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Soft stop the engine. The motor is slowing down with the deceleration specified in move_settings.

6.2.6.111 Command STMS

Command code (CMD): “stms” or 0x736D7473.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Start measurements and buffering of speed and the speed error (target speed minus real speed).

6.2.6.112 Command STOP

Command code (CMD): “stop” or 0x706F7473.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Immediately stops the engine, moves it to the STOP state, and sets switches to BREAK mode (windings
are short-circuited). The holding regime is deactivated for DC motors, keeping current in the windings for stepper
motors (to control it, see Power management settings). When this command is called, the ALARM flag is reset.

6.2. Communication protocol specification 258

mDrive User Manual, Release 3.1.2

6.2.6.113 Command UPDF

Command code (CMD): “updf” or 0x66647075.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: The command switches the controller to update the firmware state. Manufacturer only. After receiving
this command, the firmware board sets a flag (for loader), sends an echo reply, and restarts the controller.

6.2.6.114 Command WDAT

Command code (CMD): “wdat” or 0x74616477.

Request: (142 bytes)

uint32_t CMD Command
uint8_t Data Encoded firmware.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Answer: (4 bytes)

uint32_t CMD Command

Description: Writes encoded firmware to the controller’s flash memory. The result of each packet write is not avail-
able. The overall result is available when the firmware upload is finished.

6.2.6.115 Command WKEY

Command code (CMD): “wkey” or 0x79656B77.

Request: (46 bytes)

uint32_t CMD Command
uint8_t Key Protection key (256 bit).
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Answer: (15 bytes)

uint32_t CMD Command
uint8_t sresult Command result.
uint8_t Reserved [8] Reserved (8 bytes)
uint16_t CRC Checksum

Description: Write command key to decrypt the firmware. Result = RESULT_OK, if the command loader. Result =
RESULT_HARD_ERROR if there was a mistake at the time of the command. The Result is not available through the
library write_key(). The function processes it internally. Can be used by the manufacturer only.

6.2. Communication protocol specification 259

mDrive User Manual, Release 3.1.2

6.2.6.116 Command ZERO

Command code (CMD): “zero” or 0x6F72657A.

Request: (4 bytes)

uint32_t CMD Command

Answer: (4 bytes)

uint32_t CMD Command

Description: Sets the current position to 0. Sets the target position of the move command and the movr command to
zero for all cases except for movement to the target position. In the latter case, the target position is calculated so that
the absolute position of the destination stays the same. For example, if we were at 400 and moved to 500, then the
command Zero makes the current position 0 and the position of the destination 100. It does not change the mode of
movement. If the motion is carried, it continues, and if the engine is in the ‘hold’, the type of retention remains.

About this document

6.3 mDrive library timeouts

A number of timeouts and wait times are used when working with mDrive Direct Control program or your own
application using mDrive library to detect errors and support robust controller operation. A list of times is provided
below, together with reasons. Times are optimized for the USB connection on a modern PC. It is important to take
delays into account when designing your own signal transmission lines to avoid erroneous timeouts.

Condition Name Time in millisec-
onds

Enumeration timeout. Happens if device
type cannot be determined.

ENUMERATE_TIMEOUT_TIME 100

Port open timeout. Happens if library can-
not open port.

DEFAULT_TIMEOUT_TIME 5000

Wait time when no data is received from de-
vice.

DEFAULT_TIMEOUT_TIME 5000

Wait time on device open. RESET_TIME/2 50
Wait time from controller reset to device
reappearance on firmware reflash.

RESET_TIME * 1.2 + DE-
FAULT_TIMEOUT_TIME

5120

Wait time on flash sector write. FLASH_SECTIONWRITE_TIME 100
Reconnect timeout on flash update . XISM_PORT_DETECT_TIME 60000

6.4 mDrive Direct Control scripts

• Brief description of the language

– Data Types

– Statements

– Variable statements

– Reserved words

6.3. mDrive library timeouts 260

mDrive User Manual, Release 3.1.2

– Functions

• Syntax highlighting

• Additional mDrive Direct Control functions

– mDrive Direct Control log

– Script execution delay

– New axis object creation

– New file object creation

– Creation of calibration structure

– Get next serial

– Wait for stop

– mDrive library functions

• Examples

– Bit mask example script

– A script which scans and writes data to the file

– Multi axis cyclic movement script

– Single axis cyclic movement script

– Homing test script

– List axis serials script

– Move and wait script

– Random shift script

– Set zero scrip

– Border crossing test

– Closed loop tuning test

– Discrete motion script

– Exponential position change in user units script

– For calb step script

– Step script

– Homing test with extio

– Motion by sin function

– Move EXTIO calb script

– Probabilistic tests

– Several shifts with calibration script

– Steps loss test

– Sync test script

mDrive Direct Control scripting language is implemented using QtScript, which in turn is based on ECMAScript.

6.4. mDrive Direct Control scripts 261

mDrive User Manual, Release 3.1.2

ECMAScript is the scripting language standardized by Ecma International in the ECMA-262 specification and
ISO/IEC 16262.

QtScript (and, by extension, mDrive Direct Control) uses third edition of the ECMAScript standard.

6.4.1 Brief description of the language

6.4.1.1 Data Types

ECMAScript supports nine primitive data types. Values of type Reference, List, and Completion are used only as
intermediate results of expression evaluation and cannot be stored as properties of objects. The rest of the types are:

• Undefined,

• Null,

• Boolean,

• String,

• Number,

• Object.

6.4.1.2 Statements

Most common ECMAScript language statements are summarized below:

Name Usage Description
Block {[<statement list>]} Several statements may be grouped into a

block using braces.
Variable declaration var <varialble declaration list> Variables are declared using “var” keyword.
Empty statement ; Semicolon denotes an empty instruction. It

is not required to end a line with a semi-
colon.

Conditional execu-
tion

if (<condition>) <instruction> [else <in-
struction>]

Conditional execution is done using “if . . .
else” keywords. If a condition is true, then
“if”-block instruction is executed, else an
“else”-block instruction is executed.

Loop do <loop body> while (<condition>) while
(<condition>) <loop body> for ([<initial-
ization>]; [<condition>]; [<iterative state-
ment>]) <loop body>

Loops have several forms. A “do . . . while
. . . ” loop executes loop body and then
checks if condition is true or false to see
whether it should stop or continue running.
A “while . . . do . . . ” loop repeatedly checks
the condition and executes loop body if it is
true. A “for . . . ” loop executes an initial-
ization statement once, then executes an it-
erative statement and loop body while the
condition is true.

Return return [<expression>] Stops function execution and returns expres-
sion as a result.

Exception throw <expression> Generates or “throws” an exception, which
may be processed by the “try” statement
(see below).

Continued on next page

6.4. mDrive Direct Control scripts 262

mDrive User Manual, Release 3.1.2

Table 6.238 – continued from previous page
Name Usage Description
Try-catch block try <block> catch (<identifier>) <block> try

<block> finally <block> try <block> catch
(<identifier>) <block> finally <block>

Used together with exceptions. This state-
ment tries to execute its “try”-block. If an
exception is thrown in it, then a “catch”-
block is executed. Finally a “finally”-
block is executed unconditionally. Either a
“catch” or a “finally” block may be omitted.

6.4.1.3 Variable statements

Variables are declared using var keyword. A declared variable is placed within visibility scope that corresponds to
the function in which it is declared. If the variable is declared outside of functions, it is placed in the global visibility
scope. Variable is created when the function within which it was declared, or, if the variable is global, at the start of the
application. When a variable is created it is initialized with Undefined value. If a variable is created with initialization,
the initialization does not occur in the moment of variable creation, it happens when the string with the var statement
executes.

6.4.1.4 Reserved words

The following words are the reserved keywords in the language and may not be used as identifiers:

break else new var
case finally return void
catch for switch while
continue function this with
default if throw
delete in try
do instanceof typeof

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the possibility
of future adoption of those extensions:

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
debugger implements protected volatile
double import public

6.4.1.5 Functions

Functions are objects in ECMAScript. Functions like any other objects can be stored in variables, objects and arrays,
can be passed as arguments to other functions and can be returned by functions. Functions, like any other objects may
have properties. Essential specific feature of functions is that they can be invoked.

In the application text, the most common way to define a function is:

function sum(arg1, arg2) { // a function which takes two parameters
return arg1 + arg2; // and returns their sum

}

6.4.2 Syntax highlighting
Script window text has syntax highlighting. Its colors are:

6.4. mDrive Direct Control scripts 263

mDrive User Manual, Release 3.1.2

Statement type color text example
Arbitrary functions purple
mDrive Direct Control functions blue
Positive numbers green
Negative numbers red
Comments grey
The rest of the text black

During the script execution the background of line with the last executed command is changed to dark gray with update
rate of once in every 20 ms.

6.4.3 Additional mDrive Direct Control functions
This image shows mDrive Direct Control functions which are available from scripts, aside from standard built-in
language functions.

• log(string text [, int loglevel]) – save text to the mDrive Direct Control log

• msleep(int ms) - delay script execution

• new_axis(int serial_number) - create new axis object

• new_file(string filename) - create new file object

• new_calibration(int A, int Microstep) - create calibration structure to pass to calibrated functions

• get_next_serial(int serial) - get next serial out of an ordered list of opened controller serials

• command_wait_for_stop(int refresh_period) - wait until controller stops moving

• and all mDrive library functions (see Programming guide)

Also, all constant values from the communication protocol are defined and can be used in scripts. Usage example.

6.4.3.1 mDrive Direct Control log

Logging is done by calling log(string text [, int loglevel]) function. This function adds the text line to the mDrive
Direct Control log. If the second loglevel parameter is passed the message receives the appropriate logging level and
is displayed in corresponding color.

Loglevel Type
1 Error
2 Warning
3 Info

Example:

var x = 5;
log("x = " + x);

Function usage example

Note: It is not recommended to invoke functions that interact with mDrive Direct Control user interface (i.e. logging
function) with a frequency of more than once in 20 ms.

6.4. mDrive Direct Control scripts 264

mDrive User Manual, Release 3.1.2

6.4.3.2 Script execution delay

Script is paused by calling the msleep(int ms) function, which suspends script execution for ms milliseconds.

Example:

msleep(200);

Function usage example.

6.4.3.3 New axis object creation

mDrive Direct Control multi-axis interface provides the ability to manage controllers via scripts. The difference
from the single-axis case is that you should specify the controller which receives the command. An “axis” object is
introduced to abstract this concept. It has methods which match the mDrive library function names. Controllers are
identified by their serial numbers.

Example:

var x = new_axis(123);
x.command_move(50);

In this example first line of the script creates an axis-type object with the variable name “x”, which tries to use
controller with the serial number “123”. If this controller is not connected, then the script will return an error and
terminate. The second line of the script sends a “move to position 50” command to this controller.

Function usage example.

6.4.3.4 New file object creation

mDrive Direct Control scripts can read from and write to files. To do this you need to create a “file” object, passing
desired filename in its constructor. File object has the following functions:

return_type Func-
tion_name

Description

bool open() Opens the file. File is opened in read-write mode if possible, in read-only mode otherwise.
void close() Closes the file.
Number size() Returns file size in bytes.
bool seek(Number
pos)

Sets current position in file to pos bytes1.

bool re-
size(Number
size)

Resizes the file to size bytes. If size is less than current file size, then the file is truncated, if
it is greater than current file size, then the file is padded with zero bytes.

bool remove() Removes the file.
String
read(Number
maxsize)

Reads up to maxsize bytes from the file and returns result as a string. Data is read in utf-8
Unicode encoding.

Number
write(String s,
Number maxsize)

Writes up to maxsize btyes to the file from the string. Data is written in utf-8 unicode encod-
ing, end-of-line character should be set by user. Returns amount of written bytes or -1 if an
error occurred.

All file functions which return bool type, return “true” on success and “false” on failure.

Use “/” symbol as path separator, this works on all systems (Windows/Linux/Mac).

1 Seeking beyond the end of a file: If the position is beyond the end of a file, then seek() shall not immediately extend the file. If a write is
performed at this position, then the file shall be extended. The content of the file between the previous end of file and the newly written data is
UNDEFINED and varies between platforms and file systems.

6.4. mDrive Direct Control scripts 265

mDrive User Manual, Release 3.1.2

Example:

var winf = new_file("C:/file.txt"); // An example of file name and path on Windows
var linf = new_file("/home/user/Desktop/file.txt"); // An example of file name and
→˓path on Linux
var macf = new_file("/Users/macuser/file.txt"); // An example of file name and path
→˓on Mac

var f = winf; // Pick a file name
if (f.open()) { // Try to open the file

f.write("some text"); // If successful, then write desired data to the file
f.close(); // Close the file

} else { // If file open failed for some reason
log("Failed opening file"); // Log an error

}

Function usage example.

6.4.3.5 Creation of calibration structure

new_calibration(double A, int Microstep) function takes as a parameter a floating point number A, which sets the ratio
of user units to motor steps, and microstep division mode, which was either read earlier from MicrostepMode field
of get_engine_settings() return type, or set by a MICROSTEP_MODE_ constant. This function returns calibration_t
structure, which should be passed to calibrated get_/set* functions to get or set values in user units. The following two
forms are functionally equivalent:

// create calibration: type 1
var calb = new_calibration(c1, c2);

// create calibration: type 2
var calb = new Object();
calb.A = c1;
calb.MicrostepMode = c2;

Function usage example.

6.4.3.6 Get next serial

get_next_serial(int serial) function takes as a parameter an integer number and returns the smallest serial from a sorted
list of opened controller serials which is strictly greater than the parameter. If there are no such serials a zero is
returned. This function is a convenient shortcut for automatic creation of “axis” type objects without hardcoded serial
numbers.

Example:

var first_serial = get_next_serial(0);
var x = new_axis(first_serial);
var y = new_axis(get_next_serial(first_serial));

In this example in the first line we obtain a serial, in the second line an axis-type object is created, in the third line we
get the next serial and create an axis for it.

Function usage example.

6.4.3.7 Wait for stop

The command_wait_for_stop(int refresh period) script function waits until the controller stops movement, that is, until
the MVCMD_RUNNING bit in the MvCmdSts member of the structure returned by the get_status() function becomes

6.4. mDrive Direct Control scripts 266

mDrive User Manual, Release 3.1.2

unset. command_wait_for_stop script function uses command_wait_for_stop mDrive library function and takes as a
paramater an integer denoting time delay in milliseconds between successive queries of controller state.

This function is also present as a method of an “axis”-type object.

Function usage example.

6.4.3.8 mDrive library functions

mDrive library functions with “get*” prefix read settings from the controller and return the corresponding settings
structure. mDrive library functions with “set*” prefix take as a parameter a settings data structure and write these
settings to the controller. There are two ways to set data structure contents:

• call the corresponding get-function and modify required fields

// set settings: type 1
var m = get_move_settings();
m.Speed = 100;
set_move_settings(m);

• create an Object and set all of its properties that are present as members of the data structure case-sensitive.

// set settings: type 2
var m = new Object;
m.Speed = 100;
m.uSpeed = 0;
m.Accel = 300;
m.Decel = 500;
m.AntiplaySpeed = 10;
m.uAntiplaySpeed = 0;
set_move_settings(m);

Please note, that in the first case controller receives an additional command (sent by the get-function before the set-
). In the second case one should initialize all object properties corresponding to structure members. Any missing
property will be initialized with zero. Any property that does not match a structure member name will be ignored.
Any property with non-matching type will be typecast according to EcmaScript rules. All data structures are described
in Communication protocol specification chapter of the manual.

Function usage example.

6.4.4 Examples
This section contains examples of typical tasks which can be easily automated by mDrive Direct Control scripts.

6.4.4.1 Bit mask example script

/*
* Bit mask example script

*
* Description of the script:

* This script clearly shows how to work with bit masks.

* This script or part of it may be needed when working with any of our other
→˓commands that use bit masks. For example, the «set_home_settings» command

*
* To run the script, upload it to the mDrive Direct Control software

*/

var a = new_axis(get_next_serial(0)); // take first found axis
var gets = a.get_status(); // read status once and reuse it

6.4. mDrive Direct Control scripts 267

mDrive User Manual, Release 3.1.2

var gpio = gets.GPIOFlags;
var left = STATE_LEFT_EDGE;
var right = STATE_RIGHT_EDGE;
var mask = left | right;
var result = gpio & mask;
log(to_binary(left) + " = left limit switch flag");
log(to_binary(right) + " = right limit switch flag");
log(to_binary(mask) + " = OR operation on flags gives the mask");
log(to_binary(gpio) + " = gpio state");
log(to_binary(result) + " = AND operation on state and mask gives result");
if (result) {

log("At least one limit switch is on");
} else {

log("Both limit switches are off");
}

// Binary representation function
function to_binary(i)
{

bits = 32;
x = i >>> 0; // coerce to unsigned in case we need to print negative ints
str = x.toString(2); // the binary representation string
return (repeat("0", bits) + str).slice (-bits); // pad with zeroes and return

}

// String repeat function
function repeat(str, times)
{

var result="";
var pattern=str;
while (times > 0) {
if (times&1) {

result+=pattern;
}
times>>=1;
pattern+=pattern;

}
return result;

}

6.4.4.2 A script which scans and writes data to the file

/*
* A script which scans and writes data to the file

*
* Description of the script:

* This script scans and writes the data to a .csv file.

* The script can be useful if you are using the system to scan an area and/or
→˓capture frames

*
* To run the script, upload it to the mDrive Direct Control software

*/

var start = 0; // Starting coordinate in steps
var step = 10; // Shift amount in steps
var end = 100; // Ending coordinate in steps

6.4. mDrive Direct Control scripts 268

mDrive User Manual, Release 3.1.2

var speed = 300; // maximum movement speed in steps / second
var accel = 100; // acceleration value in steps / second^2
var decel = 100; // deceleration value in steps / second^2
var delay = 100;

var m = get_move_settings(); // read movement settings from the controller
m.Speed = speed; // set movement speed
m.Accel = accel; // set acceleration
m.Decel = decel; // set deceleration
set_move_settings(m); // write movement settings into the controller

var f = new_file("C:/a.csv"); // Choose a file name and path
f.open(); // Open a file
f.seek(0); // Seek to the beginning of the file

command_move(start); // Move to the starting position
command_wait_for_stop(delay); // Wait until controller stops moving

while (get_status().CurPosition < end) {
f.write(get_status().CurPosition + "," + get_chart_data().Pot + "," + Date.now() +

→˓"\n"); // Get current position, potentiometer value and date and write them to file
command_movr(step); // Move to the next position
command_wait_for_stop(delay); // Wait until controller stops moving

}
f.close(); // Close the file

6.4.4.3 Multi axis cyclic movement script

/*
* Multi axis cyclic movement script

*
* Description of the script:

* Does cyclic movement between two border points with set values of acceleration,

* deceleration and top speed, for all axes found. The script is similar to the
→˓"Cyclic"

* button in mDrive Direct Control

*
* To run the script, upload it to the mDrive Direct Control software

*/

var axes = [];
var number_of_axes = 0;
var last_serial = 0;

while (serial = get_next_serial(last_serial)) // Get next serial number and repeat
→˓for each axes
{

axes[number_of_axes] = new_axis(serial);
log("Found axis " + number_of_axes + " with serial number " + serial);
number_of_axes++;
last_serial = serial;

}

for (var i = 0; i < number_of_axes; i++)
{

axis_configure(axes[i]);

6.4. mDrive Direct Control scripts 269

mDrive User Manual, Release 3.1.2

}

while (1)
{

for (var i = 0; i < number_of_axes; i++)
{
go_first_border(axes[i]);
go_second_border(axes[i]);

}

msleep(100);
}

function axis_configure(axis)
{

var speed = 1000; // Maximum movement speed in steps / second
var accel = 2000; // Acceleration value in steps / second^2
var decel = 5000; // Deceleration value in steps / second^2

axis.command_stop(); // send STOP command (does immediate stop)
axis.command_zero(); // send ZERO command (sets current position and encoder value

→˓to zero)
var m = axis.get_move_settings(); // read movement settings from the controller
m.Speed = speed; // set movement speed
m.Accel = accel; // set acceleration
m.Decel = decel; // set deceleration
axis.set_move_settings(m); // write movement settings into the controller

}

function go_first_border(axis)
{

var first_border = 0; // first border coordinate in steps
var GETS = axis.get_status();

if (!(GETS.MvCmdSts & MVCMD_RUNNING) && (GETS.CurPosition != first_border))
{
axis.command_move(first_border); // move towards one border

}
}

function go_second_border(axis)
{

var second_border = 25000; // second border coordinate in steps
var GETS = axis.get_status();

if (!(GETS.MvCmdSts & MVCMD_RUNNING) && (GETS.CurPosition != second_border))
{
axis.command_move(second_border); // move towards another border

}
}

6.4.4.4 Single axis cyclic movement script

/*
* Single axis cyclic movement script

*
* Description of the script:

6.4. mDrive Direct Control scripts 270

mDrive User Manual, Release 3.1.2

* Does cyclic movement between two border points with set values of acceleration,

* deceleration and top speed. The script is similar to the "Cyclic" button in mDrive
→˓Direct Control

*
* To run the script, upload it to the mDrive Direct Control software

*/

var first_border = -10; // first border coordinate in mm
var second_border = 10; // second border coordinate in mm
var mm_per_step = 0.005; // steps to distance translation coefficient
var delay = 100; // delay in milliseconds
var calb = new_calibration(mm_per_step, get_engine_settings().MicrostepMode); //
→˓create calibration structure
command_stop(); // send STOP command (does immediate stop)
command_zero(); // send ZERO command (sets current position and encoder value to zero)
while (1) { // infinite loop
command_move_calb(first_border, calb); // move towards one border
command_wait_for_stop(delay); // wait until controller stops moving
command_move_calb(second_border, calb); // move towards another border
command_wait_for_stop(delay); // wait until controller stops moving

}

6.4.4.5 Homing test script

/*
* Homing test script

*
* Description of the script:

* This script tests homing function by repeatedly moving to a random position,

* doing quick stop and then homing, for all axes found. The script is similar to the
→˓GO

* Home button in mDrive Direct Control

*
* To run the script, upload it to the mDrive Direct Control software

*/

var axes = [];
var number_of_axes = 0;
var last_serial = 0;
while (serial = get_next_serial(last_serial)) // get next serial number and repeat
→˓for each axes.
{

axes[number_of_axes] = new_axis(serial);
log("Found axis " + number_of_axes + " with serial number " + serial);
number_of_axes++;
last_serial = serial;

}

while (1) { // infinite loop
for (var i = 0; i < number_of_axes; i++)

{
homing_test(axes[i]);

}
}

function homing_test(axis)
{

6.4. mDrive Direct Control scripts 271

mDrive User Manual, Release 3.1.2

var shift_low = 0; // minimum shift distance in steps
var shift_high = 10000; // maximum shift distance in steps
var speed_low = 100; // minimum movement speed in steps / second
var speed_high = 5000; // maximum movement speed in steps / second
var time_low = 1; // minimum wait time in seconds
var time_high = 10; // maximum wait time in seconds

axis.command_home(); // send HOME command (find home position)
axis.command_wait_for_stop(100); // wait until controller stops moving
var m = axis.get_move_settings(); // read movement settings from the controller
m.Speed = rnd(speed_low, speed_high); // set random speed from a range of speeds

→˓between "speed_low" and "speed_high"
axis.set_move_settings(m); // write movement settings into the controller
var shift = rnd(shift_low, shift_high); // pick random shift value from a range

→˓of distances between "shift_low" and "shift_high"
if (Math.random() < 0.5) { // pick random direction

shift = -shift;
}
axis.command_movr(shift); // send MOVR command (does a relative shift)
msleep(rnd(time_low*1000, time_high*1000)); // pause for a random time from a

→˓range between "time_low" and "time_high"
axis.command_stop(); // send STOP command (does immediate stop)

}

function rnd(min,max) { // "rnd" is a helper function which uses Math.random() and
→˓returns a uniformly distributed integer random value between "min" and "max"
var r = Math.random()*(max-min)+min;
return Math.round(r);

}

6.4.4.6 List axis serials script

/*
* List axis serials script

*
* Description of the script:

* An example of a script that searches for all the serial numbers of controllers

* and outputs them to the log.

*
* To run the script, upload it to the mDrive Direct Control software

*/

var i = 0; // Declare loop iteration variable
var serial = 0; // Declare serial number variable
var axes = Array(); // Declare axes array
while (true) { // The loop
serial = get_next_serial(serial); // Get next serial
if (serial == 0) // If there are no more controllers then...

break; // ...break out of the loop
var a = new Object(); // Create an object
a.serial = serial; // Assign serial number to its "serial" property
a.handle = new_axis(serial); // Assign new axis object to its "handle" property
axes[i] = a; // Add it to the array
i++; // Increment counter

}
for (var k=0; k < axes.length; k++) { // Iterate through array elements
log ("Axis with S/N " + axes[k].serial + " is in position " + axes[k].handle.get_

→˓status().CurPosition); // For each element print saved axis serial and call a get_
→˓status() function

6.4. mDrive Direct Control scripts 272

mDrive User Manual, Release 3.1.2

}

6.4.4.7 Move and wait script

/*
* Move and wait script

*
* Description of the script:

* The script reads the next coordinate and the delay time from the csv file,

* after which it moves to the specified coordinate with a subsequent delay,

* and so on until the end of reading the entire file.

* The script can be useful if you are using the system to scan an area and/or
→˓capture frames

* To run the script, upload it to the mDrive Direct Control software

*/

var axis = new_axis(get_next_serial(0)); // Use first available controller
var x; // A helper variable, represents coordinate
var ms; // A helper variable, represents wait time in milliseconds
var f = new_file("./move_and_sleep.csv"); // Choose a file name and path; this script
→˓uses a file from examples in the installation directory
f.open(); // Open a file
while (str = f.read(4096)) { // Read file contents string by string, assuming each
→˓string is less than 4 KiB long
var ar = str.split(","); // Split the string into substrings with comma as a

→˓separator; the result is an array of strings
x = ar[0]; // Variable assignment
ms = ar[1]; // Variable assignment
log("Moving to coordinate " + x); // Log the event
axis.command_move(x); // Move to the position
axis.command_wait_for_stop(100); // Wait until the movement is complete
log("Waiting for " + ms + " ms"); // Log the event
msleep(ms); // Wait for the specified amount of time

}
log ("The end.");
f.close(); // Close the file

6.4.4.8 Random shift script

/*
* Random shift script

*
* Description of the script:

* This script does shifts on random offset from a specified range of distances

* with a random speed from a chosen range of speeds.

* To run the script, upload it to the mDrive Direct Control software

*/

var axes = [];
var number_of_axes = 0;
var last_serial = 0;
while (serial = get_next_serial(last_serial)) // get next serial number and repeat
→˓for each axes.
{

axes[number_of_axes] = new_axis(serial);
log("Found axis " + number_of_axes + " with serial number " + serial);

6.4. mDrive Direct Control scripts 273

mDrive User Manual, Release 3.1.2

number_of_axes++;
last_serial = serial;

}

while (1) { // infinite loop
for (var i = 0; i < number_of_axes; i++)
{

go_to_random_shift(axes[i]);
}

}

function go_to_random_shift(axis)
{

var shift_low = 0; // minimum shift distance in steps
var shift_high = 10000; // maximum shift distance in steps
var speed_low = 100; // minimum movement speed in steps / second
var speed_high = 5000; // maximum movement speed in steps / second

var m = axis.get_move_settings(); // read movement settings from the controller
m.Speed = rnd(speed_low, speed_high); // set random speed from a range of speeds

→˓between "speed_low" and "speed_high"
axis.set_move_settings(m); // write movement settings into the controller
var shift = rnd(shift_low, shift_high); // pick random shift value from a range of

→˓distances between "shift_low" and "shift_high"
if (Math.random() < 0.5) { // pick random direction

shift = -shift;
}
axis.command_movr(shift); // send MOVR command (does a relative shift)
axis.command_wait_for_stop(100); // wait until controller stops moving

}

function rnd(min,max) { // "rnd" is a helper function which uses Math.random() and
→˓returns a uniformly distributed integer random value between "min" and "max"
var r = Math.random()*(max-min)+min;
return Math.round(r);

}

6.4.4.9 Set zero scrip

/*
* Set zero script

*
* Description of the script:

* This script changes "standoff" setting (found on "Home position" page in the
→˓mDrive Direct Control "Settings") so that the current position becomes the home
→˓position.

* The script is very convenient for calibrating and configuring new stages, as well
→˓as for changing the zero position

*
* How to use:

* - manually move your positioner to a desired position

* - launch this script and wait for completion

* As a result your positioner will return to the starting position and all
→˓subsequent calls to "homing" function will bring it there.

*
* Note: homing settings are saved into RAM and will be lost when controller is
→˓powered down. If you wish to save these settings to non-volatile memory you should
→˓either pick "Save settings to flash" on the mDrive main Settings page or call
→˓"command_save_settings()" at the end of the script.

6.4. mDrive Direct Control scripts 274

mDrive User Manual, Release 3.1.2

*
* To run the script, upload it to the mDrive Direct Control software

*/

var axes = [];
var number_of_axes = 0;
var last_serial = 0;
while (serial = get_next_serial(last_serial)) // get next serial number and repeat
→˓for each axes.
{

axes[number_of_axes] = new_axis(serial);
log("Found axis " + number_of_axes + " with serial number " + serial);
number_of_axes++;
last_serial = serial;

}

for (var i = 0; i < number_of_axes; i++)
{

set_zero(axes[i]);
}

function set_zero(axis)
{

axis.command_stop(); // send STOP command (does immediate stop)

var h = axis.get_home_settings(); // read homing settings from the controller
h.HomeDelta = 0; // set "HomeDelta" parameter in "home_position" structure to 0
h.uHomeDelta = 0; // set "uHomeDelta" parameter in "home_position" structure to 0
var saved_fast = h.FastHome; // save "FastHome" parameter from "home_position"

→˓structure to a variable
var saved_ufast = h.uFastHome; // save "uFastHome" parameter from "home_position"

→˓structure to a variable
if (h.HomeFlags & HOME_MV_SEC_EN != 0) // if homing settings have two homing

→˓phases turned on
{

h.FastHome = 100; // set "FastHome" parameter in "home_position" structure
→˓(first movement speed) to 100 steps/s: this is required to avoid slip at the end of
→˓the first phase

h.uFastHome = 0; // set "uFastHome" parameter in "home_position" structure to 0
}
axis.set_home_settings(h); // write homing settings into the controller

var old_pos = axis.get_status().CurPosition; // save whole step part of the
→˓initial position into a variable

var old_upos = axis.get_status().uCurPosition; // save microstep part of the
→˓initial position into a variable

axis.command_home(); // send HOME command (find home position)
do { msleep(100); } while (axis.get_status().MvCmdSts == (MVCMD_HOME | MVCMD_

→˓RUNNING)); // query controller state every 100 ms while movement state is "homing
→˓command is being executed"

if (axis.get_status().MvCmdSts != MVCMD_HOME) // if current state is not "homing
→˓completed successfully" (MVCMD_RUNNING unset, MVCMD_ERROR unset, last command MVCMD_
→˓HOME) then homing was interrupted

{
h.FastHome = saved_fast; // set "FastHome" parameter in "home_position"

→˓structure to a saved value
h.uFastHome = saved_ufast; // set "uFastHome" parameter in "home_position"

→˓structure to a saved value

6.4. mDrive Direct Control scripts 275

mDrive User Manual, Release 3.1.2

axis.set_home_settings(h); // write movement settings into the controller
→˓(this restores the initial settings)

throw "Script aborted: homing failed."; // throw an exception and terminate
}

var new_pos = axis.get_status().CurPosition; // read whole part of new position
→˓into "new_pos" variable

var new_upos = axis.get_status().uCurPosition; // read microstep part of new
→˓position into "new_upos" variable

h.HomeDelta = old_pos-new_pos; // set "HomeDelta" parameter in "home_position"
→˓structure to this value

h.uHomeDelta = old_upos-new_upos; // set "uHomeDelta" parameter in "home_position
→˓" structure to this value

h.FastHome = saved_fast; // set "FastHome" parameter in "home_position" structure
→˓to a saved value

h.uFastHome = saved_ufast; // set "uFastHome" parameter in "home_position"
→˓structure to a saved value

axis.set_home_settings(h); // write movement settings into the controller
axis.command_move(old_pos, old_upos); // move to initial position
do { msleep(100); } while (axis.get_status().MvCmdSts == (MVCMD_MOVE | MVCMD_

→˓RUNNING)); // query controller state every 100 ms while movement state is "movement
→˓command is being executed"

if (axis.get_status().MvCmdSts != MVCMD_MOVE) // if current state is not
→˓"movements completed successfully" (MVCMD_RUNNING unset, MVCMD_ERROR unset, last
→˓command MVCMD_MOVE) then movement was interrupted

{
throw "Script aborted: return to position failed."; // throw an exception and

→˓terminate
}
axis.command_zero(); // send ZERO command (sets current position and encoder

→˓value to zero)
}

log("Done."); // log success

6.4.4.10 Border crossing test

/*
* Border crossing test

*
* Description of the script:

* The script checks the correct operation of the connected external limit switch

*
* How to connect wires?

* You must connect the limit switch to the DVI-I connector (pins 2 and 3 on the
→˓controller connector).

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

const MVCMD_ERROR = 0x40;
const MVCMD_RUNNING = 0x80;

var axis = new_axis(get_next_serial(0));

6.4. mDrive Direct Control scripts 276

mDrive User Manual, Release 3.1.2

var m = axis.get_extio_settings();
var s = axis.get_status();

var count_error = 0;
var count_good = 0;

function BorderOff()
{

m.EXTIOSetupFlags = 0x01;
m.EXTIOModeFlags = 0x10;

axis.set_extio_settings(m);
}

function BorderOn()
{

m.EXTIOSetupFlags = 0x01;
m.EXTIOModeFlags = 0x00;

axis.set_extio_settings(m);
}

function BorderCycle()
{

BorderOn();
msleep(50);

BorderOff();
msleep(100);

}

log("You have to connect the common",2);
log("input/output pin on the backplane connector to",2);
log("the 2nd limit switch pin on the stage connector", 2);
log("Also its recommended to load the profile for your stage", 2);

log(">>> Start testing", 3);

while (1)
{

axis.command_left();
msleep(200);
BorderOn();
msleep(200);
s = axis.get_status();

if (s.MvCmdSts & MVCMD_RUNNING)
{
count_error++;

log(">>> ALARM ! Crossing through the limit switch !" ,1);
}
else
{
count_good++;

if (!(count_good % 50))
log(">>> " + count_good + " cycles were done correct, " + count_error + "

→˓cycles were done incorrect", 3);

6.4. mDrive Direct Control scripts 277

mDrive User Manual, Release 3.1.2

}

BorderOff();
}

6.4.4.11 Closed loop tuning test

/*
* Closed loop tuning test

*
* Description of the script:

* The script checks the parameters of a closed loop

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

var global_axis;

global_axis = new_axis(get_next_serial(0));
global_axis.command_stop();

const DEBUG = 1;
const MICROSTEPS = 256;
const SKIP_ENCODER_COUNT = 7;
const STORE_COUNT_MICROSTEPS = 19;
const TRUST_INDEX = 15; // Always TRUST_INDEX < STORE_COUNT_MICROSTEPS

/*
* Save and overwrite settings

*/
var SFBS = global_axis.get_feedback_settings(); // Save information about encoder
→˓(IPS)
SFBS.FeedbackType = FEEDBACK_NONE; // Overwrite feedback type, because
→˓in profile feedback is encoder

var SENG = global_axis.get_engine_settings(); // Save information about engine
→˓(nominal current, steps per revolution)

var SENT = global_axis.get_entype_settings(); // Save information about engine type

var SEDS = global_axis.get_edges_settings(); // Save information about edges

/*
* Clear FRAM for synchronization

* real full step with full step of firmware

*/
log("Clearing FRAM", 1);
global_axis.command_clear_fram();
msleep(4000);

/*
* Restore controller settings

*/
global_axis.set_feedback_settings(SFBS);

6.4. mDrive Direct Control scripts 278

mDrive User Manual, Release 3.1.2

msleep(100);

global_axis.set_engine_settings(SENG);
msleep(100);

global_axis.set_entype_settings(SENT);
msleep(100);

global_axis.set_edges_settings(SEDS);
msleep(100);

/*
* Prepare and apply move settings

*/
var SMOV = global_axis.get_move_settings();
SMOV.Speed = 0;
SMOV.uSpeed = 16;
global_axis.set_move_settings(SMOV);
msleep(100);

/*
* Going to the full step and waiting 3 seconds for equilibration

*/
global_axis.command_move(0, 0);
msleep(3000);

/*
* Arrays for measurements and structure for GPOS

*/
var MicroStepsToRight = [];
var MicroStepsToLeft = [];
var EncToRight = [];
var EncToLeft = [];
var GPOS;

/*
* Start moving

*/
global_axis.command_right();

/*
* Skipping a some first counts for the stable experiment

*/
for (var i = 0; i < SKIP_ENCODER_COUNT; i++)
{

GPOS = global_axis.get_position();
var EncPos = GPOS.EncPosition;

while (EncPos == GPOS.EncPosition)
{
msleep(40);
GPOS = global_axis.get_position();

}

EncPos = GPOS.EncPosition;
}

/*

6.4. mDrive Direct Control scripts 279

mDrive User Manual, Release 3.1.2

* Start measurements

*/
for (var i = 0; i < STORE_COUNT_MICROSTEPS; i++)
{

GPOS = global_axis.get_position();
var EncPos = GPOS.EncPosition;

while (EncPos == GPOS.EncPosition)
{
msleep(40);
GPOS = global_axis.get_position();

}

EncPos = GPOS.EncPosition;

MicroStepsToRight[i] = GPOS.Position * MICROSTEPS + GPOS.uPosition;
EncToRight[i] = GPOS.EncPosition;

}

/*
* Stop moving

*/
global_axis.command_stop();

/*
* Start moving and measurements

*/
global_axis.command_left();

for (var i = 0; i < STORE_COUNT_MICROSTEPS; i++)
{

GPOS = global_axis.get_position();
var EncPos = GPOS.EncPosition;

while (EncPos == GPOS.EncPosition)
{
msleep(40);
GPOS = global_axis.get_position();

}

EncPos = GPOS.EncPosition;

MicroStepsToLeft[STORE_COUNT_MICROSTEPS - 1 - i] = GPOS.Position * MICROSTEPS +
→˓GPOS.uPosition;
EncToLeft[STORE_COUNT_MICROSTEPS - 1 - i] = GPOS.EncPosition;

}

/*
* Stop moving

*/
global_axis.command_stop();

/*
* Check all values

*/
for (var i = 0; i < STORE_COUNT_MICROSTEPS; i++)
{

var diffMicrosteps = MicroStepsToRight[i] - MicroStepsToLeft[i];

6.4. mDrive Direct Control scripts 280

mDrive User Manual, Release 3.1.2

var diffConts = EncToRight[i] - EncToLeft[i];

if (DEBUG)
{
log(MicroStepsToRight[i] + " - " + MicroStepsToLeft[i] + " = " + diffMicrosteps +

→˓" microstep(s)\t" +
EncToRight[i] + " - " + EncToLeft[i] + " = " + diffConts + " count(s)", 3);

}

if (diffConts != 1)
{
log("Script error! Try again", 1);

}
}

var RightB = (MicroStepsToRight[TRUST_INDEX] * EncToRight[0] - MicroStepsToRight[0] *
→˓EncToRight[TRUST_INDEX]) / (EncToRight[0] - EncToRight[TRUST_INDEX]);
var LeftB = (MicroStepsToLeft[TRUST_INDEX] * EncToLeft[0] - MicroStepsToLeft[0] *
→˓EncToLeft[TRUST_INDEX]) / (EncToLeft[0] - EncToLeft[TRUST_INDEX]);

log("Right counts show B = " + RightB, 2);
log("Left counts show B = " + LeftB, 2);
log("Aver B = " + ((RightB + LeftB) / 2), 3);

6.4.4.12 Discrete motion script

/*
* Discrete motion script

*
* Description of the script:

* The script opens two axes by serial numbers. Moves along the X axis to a certain
→˓coordinate. Then it begins to shift discretely along the Y axis, with a
→˓programmable pause after each offset.

* The script can be useful if you are using the system to scan an area and/or
→˓capture frames

*
* Warning: enter the serial numbers of your axes!

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

// Enter the serial numbers of your axes.
serial_number_x = 14889;
serial_number_y = 14888;

var x = new_axis(serial_number_x);
var y = new_axis(serial_number_y);

// Installing the source data
var x_target_coordinate = 5000; // first border coordinate
var delay = 100; // delay in milliseconds

var y_first_border = 0; // first border coordinate
var y_second_border = 5000; // second border coordinate

6.4. mDrive Direct Control scripts 281

mDrive User Manual, Release 3.1.2

var y_step = 100
var y_direct = 1

// Calibration and positioning of the axes to their original positions.
x.command_stop(); // send STOP command (does immediate stop)
x.command_zero(); // send ZERO command (sets current position and encoder value to
→˓zero)
y.command_stop(); // send STOP command (does immediate stop)
y.command_zero(); // send ZERO command (sets current position and encoder value to
→˓zero)

x.command_move(x_target_coordinate); // move to wards one border
x.command_wait_for_stop(10); // wait until controller stops moving
y.command_move(y_first_border); // move towards one border
y.command_wait_for_stop(10); // wait until controller stops moving

// Movement in discrete samples along one axis from the end to the end
// with a delay after each movement.
while (1) { // infinite loop

// Choosing the direction of travel
if (y.get_position() >= y_second_border)
{

y_direct = -1
}
if (y.get_status().CurPosition <= y_first_border)
{

y_direct = 1
}

// Movement in a given direction
y.command_movr(y_step*y_direct); // move towards another border
y.command_wait_for_stop(10); // wait until controller stops moving
msleep(delay);
}

6.4.4.13 Exponential position change in user units script

/*
* Exponential position change in user units script

*
* Description of the script:

* The script performs discrete control of movement according to a certain law of
→˓motion. The amplitude and the law of displacement are given. A correction speed is
→˓used to maintain the positioning accuracy.

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

// Main characteristics
var time_discre = 10; // Discreteness of movement control(ms)
var end_err = 0.01; // The accuracy of reaching the final coordinate of the movement.

var full_move = 6; // Total movement in mm

6.4. mDrive Direct Control scripts 282

mDrive User Manual, Release 3.1.2

// If you change the equation of motion, you will need to change the equation for the
→˓correction velocity, since this change is not linear.
var K = 0.4;
var Glob_err = 0;

// Advanced setting.
var mm_per_step = 0.00125; // Distance in gr for 1 completed step.
var calb = new_calibration(mm_per_step, get_engine_settings().MicrostepMode); //
→˓create calibration structure

// Setting the starting position.
command_stop(); // send STOP command (does immediate stop)
command_wait_for_stop(10); // wait until controller stops moving
command_zero(); // send ZERO command (sets current position and encoder value to zero)

log("Start:");
// Setting 0 speeds and accelerations.
zero_movesettings();

//
go_position(full_move, time_discre)

// Function for calculating the set speed and acceleration
function set_movesettings(time, corr_speed)
{

// Speed, Accel, Decel setting.
var m = get_move_settings_calb(calb); // read movement settings from the controller

// The equation of speed is equal to the derivative of the equation of motion.
m.Speed = K*Math.exp(K*time/1000)+ corr_speed;

set_move_settings_calb(m, calb); // write movement settings into the controller

log("Speed = " +m.Speed);
log("corr_speed = " +corr_speed);
}

// Set the initial parameters of motion
function zero_movesettings()
{

var m = get_move_settings_calb(calb); // read movement settings from the controller
m.Speed = 0.1; // set movement speed

set_move_settings_calb(m, calb); // write movement settings into the controller
}

// A function of calculating target coordinates from time
function current_target_coordinate(time)
{

// The equation of motion. The time is set in milliseconds. The position at the
→˓initial time is 0.
return (Math.exp(K*time/1000) - 1);

}

// The calculation of the correction speed

6.4. mDrive Direct Control scripts 283

mDrive User Manual, Release 3.1.2

function speed_corr(err_pos)
{

Glob_err = Glob_err + err_pos*0.35;
return Glob_err;

}

// The main moving
function go_position(full_time, time_discre)
{

Glob_err = 0;
var end_position = full_move;

// Setting the movement to the desired coordinate.
command_move_calb(end_position, calb);

// Pause before starting to move, to turn on the power button.
msleep(300);
var mas = 1;
var basetime = new Date();
var curr_time = new Date();
var err_pos = 0;
var pos = 0;
var pos1 = 0;
var i = time_discre;
do {
// If you do not need position feedback, you can instead speed_corr(err_pos)

→˓write 0
set_movesettings(i+1, speed_corr(err_pos));

// Waiting for the end of a discrete time interval
do {

curr_time = new Date - basetime;
msleep(1);

}
while ((curr_time) < i); //

// Reading the actual and calculating the planned coordinate if used.
pos = get_position_calb(calb).Position;
pos1 = current_target_coordinate(i);

// Calculation of the position error.
err_pos = (pos1 - pos);

log("time = " + i);
log("err_pos = " + err_pos);

i = i + time_discre
}
while (Math.abs(pos - end_position) > end_err); // Completion when the end of the

→˓movement is reached with the specified accuracy.
}

6.4.4.14 For calb step script

/*
* For calb step script

*

6.4. mDrive Direct Control scripts 284

mDrive User Manual, Release 3.1.2

* Description of the script:

* In the script, the user units are configured, after which there is a departure to
→˓the leftmost position and then a certain number of shifts occur until the right
→˓position is reached. Each position is recorded in a .csv file.

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

command_home(); // send HOME command (find home position)
command_wait_for_stop(100);
command_zero();
command_wait_for_stop(100);

// Setting the value to convert to user unit
var mm_per_step = 0.00125; // steps to distance translation coefficient
var calb = new_calibration(mm_per_step, get_engine_settings().MicrostepMode); //
→˓create calibration structure

// Setting boundaries and movement step
// Boundaries can be set manually or taken from limit constraints
var edge = get_edges_settings_calb(calb);
var first_border = edge.LeftBorder; //0;
var second_board = edge.RightBorder;//23;
var shift = 5;//step move;
var delay = 2000;// The delay of movement

var f = new_file("file.csv"); // Choose a file name and path
f.open(); // Open a file
f.resize(0);
f.seek(0); // Seek to the beginning of the file

command_move_calb(first_border, calb); // Move to the starting position
command_wait_for_stop(delay); // Wait until controller stops moving
var i = 1;
var time = 0;
var step = (second_board - first_border)/shift;
f.write(0+ "," + get_status().CurPosition + "," + get_status().uCurPosition+ "," +
→˓"\n"); // Get current position, potentiometer value and date and write them to file
do {

time = i*delay;
command_movr_calb(shift, calb); // Move to the next position
command_wait_for_stop(delay); // Wait until controller stops moving
f.write(time + "," + get_position_calb(calb).Position + "," + get_position_

→˓calb(calb).EncPosition+ "," + "\n"); // Get current position, potentiometer value
→˓and date and write them to file
i = i+1;

} while (get_position_calb(calb).Position+shift < second_board)
f.close(); // Close the file

6.4.4.15 Step script

/*
* Step script

*

6.4. mDrive Direct Control scripts 285

mDrive User Manual, Release 3.1.2

* Description of the script:

* In the script, there is a departure to the leftmost position and then a certain
→˓number of shifts occur until the right position is reached. Each position is
→˓recorded in a .csv file.

*
* Note: The script is similar to the "for_calb_step" script, only in this script the
→˓offset occurs at the step mode

*
* To run the script, upload it to the mDrive Direct Control software

*/

command_home(); // send HOME command (find home position)
command_wait_for_stop(100);
command_zero();
command_wait_for_stop(100);
var edge = get_edges_settings();
var first_border = edge.LeftBorder;
var second_board = edge.RightBorder;
var count = 10;
var f = new_file("E:/a.csv"); // Choose a file name and path
f.open(); // Open a file
f.seek(0); // Seek to the beginning of the file

var delay = 2000;
command_move(first_border); // Move to the starting position
command_wait_for_stop(delay); // Wait until controller stops moving
var i = 1;
var time = 0;
var shift = 6;
var step = (second_board - first_border)/shift;
f.write(0+ "," + get_status().CurPosition + "," + get_status().uCurPosition+ "," +
→˓"\n"); // Get current position, potentiometer value and date and write them to file
do {

time = i*delay;
command_movr(step, 0); // Move to the next position
command_wait_for_stop(delay); // Wait until controller stops moving
f.write(time + "," + get_status().CurPosition + "," + get_status().uCurPosition+

→˓"," + "\n"); // Get current position, potentiometer value and date and write them
→˓to file
i = i+1;

} while (i < shift)
f.close(); // Close the file

6.4.4.16 Homing test with extio

/*
* Homing test with extio

*
* Description of the script:

* The script starts calibration when a signal is received from a general purpose
→˓digital input/output (extio)

*
* How to connect wires?

* You must connect to the DVI-I connector (pin 14 on the controller).

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

6.4. mDrive Direct Control scripts 286

mDrive User Manual, Release 3.1.2

*
* To run the script, upload it to the mDrive Direct Control software

*/

const MVCMD_ERROR = 0x40;
const MVCMD_RUNNING = 0x80;

var axis = new_axis(get_next_serial(0));
var m = axis.get_extio_settings();
var s = axis.get_status();

var count_error = 0;
var count_good = 0;

function BorderOff()
{

m.EXTIOSetupFlags = 0x01;
m.EXTIOModeFlags = 0x10;

axis.set_extio_settings(m);
}

function BorderOn()
{

m.EXTIOSetupFlags = 0x01;
m.EXTIOModeFlags = 0x00;

axis.set_extio_settings(m);
}

function BorderCycle()
{

BorderOn();
msleep(50);

BorderOff();
msleep(2500);

}

log(">>> Start testing", 3);

while (1)
{

axis.command_home();
msleep(1500);

BorderCycle();
BorderCycle();

command_wait_for_stop(100);

s = axis.get_status();

if (s.MvCmdSts & MVCMD_ERROR)
{
count_error++;

log(">>> Alarm! Homing broken", 1);

6.4. mDrive Direct Control scripts 287

mDrive User Manual, Release 3.1.2

}
else
{
count_good++;

if (!(count_good % 50))
log(">>> " + count_good + " cycles were done correct, " + count_error + "

→˓cycles were done incorrect", 3);
}

}

6.4.4.17 Motion by sin function

/*
* Motion by sin function

*
* Description of the script:

* A script for moving with a change in speed according to the trigonometric law.

* The script can be useful for precise positioning of a laser or motorized mirror

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

var delay = 100;

/* Definition of delta and initial phase*/
var df = 0.05;
var f = 0;

/* Definition of package */
var GETS = new Object();

// Initial installations
var move_set = get_move_settings();
var speed = 3000;
var amplitude = 1000;
var nomber = 100;
var time = 1000;
var pos = 0;
var Pi = 3.1415;
df = Pi/nomber;

command_zero();

var pos_read = new Object();
while (1)
{

pos_read = get_position();

// Movement to a point with an increase in the velocity amplitude
for (i = 1; i <= nomber-1; i++)
{

f = df*i;

6.4. mDrive Direct Control scripts 288

mDrive User Manual, Release 3.1.2

move_set.Speed = speed * Math.sin(f);
pos = amplitude*i /nomber;

set_move_settings(move_set);
command_move(pos);
while (Math.abs(pos_read.Position - pos)>move_set.Speed/10)
{

pos_read = get_position();
}

}

// Movement to a point with a decrease in the velocity amplitude
for (i = nomber-1; i >= 1; i--)
{

f = df*i;

move_set.Speed = speed * Math.sin(f);
pos = amplitude*i /nomber;

set_move_settings(move_set);
command_move(pos);
while (Math.abs(pos_read.Position - pos)>move_set.Speed/10)
{

pos_read = get_position();
}

}

msleep(1000);

}

6.4.4.18 Move EXTIO calb script

/*
* Move EXTIO calb script

*
* Description of the script:

* The script moves to one of the 2 specified points, depending on the state of the
→˓EXTIO input. The movement is carried out in user units.

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

// Main characteristics
var time_discre = 10; // Discreteness of movement control(ms)
var nomspeed = 5;
var end_err = 0.015;

var low_position = 0; // Move to position for low EXTIO
var high_position = 180; // Move to position for high EXTIO

// Advanced setting.

6.4. mDrive Direct Control scripts 289

mDrive User Manual, Release 3.1.2

var gr_per_step = 0.015; // Distance in gr for 1 completed step.
var calb = new_calibration(gr_per_step, get_engine_settings().MicrostepMode); //
→˓create calibration structure

// Setting the starting position.
command_stop(); // send STOP command (does immediate stop)
command_wait_for_stop(10); // wait until controller stops moving
command_home();
command_zero(); // send ZERO command (sets current position and encoder value to zero)

log("Start:");
// Setting 0 speeds and accelerations.
movesettings();

extiosettings();
//
go_position(time_discre)

function extiosettings()
{

var extsettings = get_extio_settings();
extsettings.EXTIOSetupFlags = 0x00;
extsettings.EXTIOModeFlags = 0x00;
set_extio_settings(extsettings);

}

// Set the initial parameters of motion
function movesettings()
{

var m = get_move_settings_calb(calb); // read movement settings from the controller
m.Speed = nomspeed; // set movement speed

set_move_settings_calb(m, calb); // write movement settings into the controller
}

// The main moving
function go_position(time_discre)
{

var oldstate = 0;
var maskstate = 32;

// Setting the movement to the desired coordinate.
command_move_calb(low_position, calb);

// Pause before starting to move, to turn on the power button.
msleep(300);

while(1) {

//
var status = get_status_calb(calb);
if ((status.GPIOFlags & maskstate) != oldstate)
{
log(status.GPIOFlags);
if (oldstate)

command_move_calb(high_position, calb);

6.4. mDrive Direct Control scripts 290

mDrive User Manual, Release 3.1.2

else
command_move_calb(low_position, calb);

oldstate = status.GPIOFlags & maskstate;
}
// Waiting for the end of a discrete time interval
msleep(time_discre);
}

}

6.4.4.19 Probabilistic tests

/*
* Probabilistic tests

*
* Description of the script:

* The script runs a set of repeatable tests a certain number of times and is
→˓expected to fail.

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

`View the full code <https://files.mdrive.tech/static/download/mDrive/other_files/
→˓scripts/probabilistic_tests.txt>`__

6.4.4.20 Several shifts with calibration script

/*
* Several shifts with calibration script

*
* Description of the script:

* This program makes shifts given number of times to the specified distance, and
→˓stands the appointed time after every shift. First it goes left, then it returns
→˓back to the origin and repeats all movements to right.

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

const LEFT = -1;
const RIGHT = 1;

var axes = [];
var number_of_axes = 0;
var last_serial = 0;
while (serial = get_next_serial(last_serial)) // get next serial number and repeat
→˓for each axes.
{

axes[number_of_axes] = new_axis(serial);
log("Found axis " + number_of_axes + " with serial number " + serial);
number_of_axes++;
last_serial = serial;

6.4. mDrive Direct Control scripts 291

mDrive User Manual, Release 3.1.2

}

// Start the main function for all avaliable axes
for (var i = 0; i < number_of_axes; i++)
{

main(axes[i]);
}

function main(axis)
{

axis.command_move(0,0); // Go back to the origin.
msleep(500);

/* Creating and filling the calibration structure for specifying distances in um */
var calibration = new Object;
calibration.A = 5; // 1 step correspond to 5 um for 8MT50-100BS1
calibration.MicrostepMode = axis.get_engine_settings().MicrostepMode; // Get

→˓MicrostepMode from controller settings
/***/

/* Main cycle */

var N = 10; // Number of shifts
var stand_time = 3000; // Stand time in ms
var shift = 10; // Distance of shift in um

MakeShifts(axis, LEFT, shift, N, stand_time, calibration); // Make 10 shifts to
→˓the left

MakeShifts(axis, RIGHT, shift, N, stand_time, calibration); // Make 10 shifts to
→˓the right

MakeShifts(axis, RIGHT, shift, N, stand_time, calibration); // Make 10 shifts to
→˓the right again

MakeShifts(axis, LEFT, shift, N, stand_time, calibration); // Make 10 shifts to
→˓the left
}

function MakeShifts(axis, Direction, ShiftDistance, ShiftsQuantity, StandTime,
→˓Calibration)
{
/**

This function makes shifts which number is specified by ShiftQuantity and length
→˓is specified by ShiftDistance. After every shift it stands StandTime miliseconds.
→˓Calibration parameter is a structure for convertation between steps and micrometers.

*/
for (var i = 0; i < ShiftsQuantity; i++)
{

axis.command_movr_calb(Direction*ShiftDistance, Calibration);
axis.command_wait_for_stop(100);
msleep(StandTime);

}
}

6.4.4.21 Steps loss test

/*
* Steps loss test

6.4. mDrive Direct Control scripts 292

mDrive User Manual, Release 3.1.2

*
* Description of the script:

* The script was written to check for skipping steps

* It can be useful for diagnosing problematic stages

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

*
* To run the script, upload it to the mDrive Direct Control software

*/

function abs(x)
{

return ((x > 0) ? x : -x);
}

/*
* Set home settings

*/
var SHOM = get_home_settings()
SHOM.FastHome = 500;
SHOM.uFastHome = 0;
SHOM.SlowHome = 20;
SHOM.uSlowHome = 0;
SHOM.HomeDelta = 300;
SHOM.uHomeDelta = 0;
SHOM.HomeFlags = HOME_STOP_FIRST_LIM;
set_home_settings(SHOM);

/*
* Check for encoder

*/
var encoder = 1
command_zero()
var first = get_status().EncPosition
command_movr(100)
command_wait_for_stop(300)
var second = get_status().EncPosition
if(abs(second - first) < 2)
{

encoder = 0
log("It seems like here are no encoder", 2)

}

command_home();
command_wait_for_stop(300);
command_zero();
msleep(200);
// Store old move settings
var MOV = get_move_settings();

// Set fast speed and accel\decel
var MOV2 =get_move_settings();
MOV2.Speed = MOV.Speed * 2;
MOV2.Accel = MOV.Accel * 2;
MOV2.Decel = MOV.Decel * 2;

for(var i=0; i < 1; i++) // Set default settings first

6.4. mDrive Direct Control scripts 293

mDrive User Manual, Release 3.1.2

{
set_move_settings(MOV2);

// Move long...
command_move(20000);
command_wait_for_stop(300);

// Set prev settings back
set_move_settings(MOV);

// Move back
command_move(0);
command_wait_for_stop(300);

}

if (encoder > 0)
{

var lost = get_status().EncPosition
if (abs(lost) > 1)
{
log("Lost " + lost + " pulses", 1)

}
else
{
log("All is OK");

}
}
else
{

log("Do final homing...")
command_home()
command_wait_for_stop(300)
var lost = get_status().CurPosition
if (abs(lost) > 2)
{
log("Lost " + lost + " steps", 1)

}
else
{
log("All is OK");

}
}

6.4.4.22 Sync test script

/*
* Sync test script

*
* Description of the script:

* The script is written to demonstrate the work of synchronization, and also checks
→˓its operability

*
* For test you must short special pins on the controller. Pin 14 (sync in) and pin 13
→˓(sync out). See chapter 4.1.2.1.1

*
* Note: This is a rather difficult script to learn, since it uses a large number of
→˓commands and structures.

6.4. mDrive Direct Control scripts 294

mDrive User Manual, Release 3.1.2

*
* To run the script, upload it to the mDrive Direct Control software

*/

const dX = 4.5;
const dot_num = 5;
const micro2mili = 1000;

var ASIA = [];

for (var i = 0; i < dot_num; i++)
ASIA[i] = new Object();

var calb = new_calibration(1, MICROSTEP_MODE_FRAC_256);

function abs(x)
{

return (x > 0) ? x : -x;
}

function set_default()
{

// SSNI settings
var SSNI = get_sync_in_settings_calb(calb);
SSNI.SyncInFlags = SYNCIN_ENABLED | SYNCIN_GOTOPOSITION;
set_sync_in_settings_calb(SSNI, calb);

// SSNO settings
var SSNO = get_sync_out_settings(calb);
SSNO.SyncOutFlags = SYNCOUT_ENABLED;
SSNO.Accuracy = 0.5;
set_sync_out_settings(SSNO, calb);

// SMOV settings
var SMOV = get_move_settings_calb(calb);
SMOV.Speed = 1000;
SMOV.Accel = 500;
SMOV.Decel = 1000;
SMOV.AntiplaySpeed = 50;
set_move_settings_calb(SMOV, calb);

// SENG settings
var SENG = get_engine_settings();
SENG.NomSpeed = 5000;
SENG.EngineFlags = ENGINE_ACCEL_ON | ENGINE_LIMIT_VOLT | ENGINE_LIMIT_CURR;
SENG.Antiplay = 50;
SENG.MicrostepMode = MICROSTEP_MODE_FRAC_256;
SENG.StepsPerRev = 200;
set_engine_settings(SENG);

}

function send_all_asia()
{

for (var i = 0; i < dot_num; i++)
command_add_sync_in_action_calb(ASIA[i], calb);

}

function check_all_asia()

6.4. mDrive Direct Control scripts 295

mDrive User Manual, Release 3.1.2

{
var GETS;

for (var i = 0; i < dot_num; i++)
{
log("> Checking movement ASIA[" + i + "]", 3);
msleep(ASIA[i].Time / micro2mili);
GETS = get_status_calb(calb);
if (abs(GETS.CurPosition - ASIA[i].Position) < dX)

log(">>> OK! GETS.CurSpeed = " + GETS.CurSpeed, 3);
else

log(">>> Error! GETS.CurPosition = " + GETS.CurPosition + ", ASIA[" + i + "].
→˓Position = " + ASIA[i].Position, 1);

}
}

function test1()
{

ASIA[0].Position = 22.5;
ASIA[0].Time = 300000;

ASIA[1].Position = 45.0;
ASIA[1].Time = 300000;

ASIA[2].Position = 32.5;
ASIA[2].Time =300000;

ASIA[3].Position = 10;
ASIA[3].Time = 300000;

ASIA[4].Position = -11.5;
ASIA[4].Time = 300000;

}

function test2()
{

ASIA[0].Position = -22.5;
ASIA[0].Time = 300000;

ASIA[1].Position = -45.0;
ASIA[1].Time = 300000;

ASIA[2].Position = -32.5;
ASIA[2].Time =300000;

ASIA[3].Position = -10;
ASIA[3].Time = 300000;

ASIA[4].Position = 11.5;
ASIA[4].Time = 300000;

}

function test3()
{

ASIA[0].Position = -6;
ASIA[0].Time = 300000;

ASIA[1].Position = 6;

6.4. mDrive Direct Control scripts 296

mDrive User Manual, Release 3.1.2

ASIA[1].Time = 300000;

ASIA[2].Position = -6;
ASIA[2].Time =300000;

ASIA[3].Position = 6;
ASIA[3].Time = 300000;

ASIA[4].Position = -6;
ASIA[4].Time = 300000;

}

command_zero();
set_default();
log(">>> Function test1() started", 3)
test1();
send_all_asia();
check_all_asia();
msleep(500);

command_zero();
set_default();
log(">>> Function test2() started", 3)
test2();
send_all_asia();
check_all_asia();
msleep(500);

command_zero();
set_default();
log(">>> Function test3() started", 3)
test3();
send_all_asia();
check_all_asia();
msleep(500);

6.4. mDrive Direct Control scripts 297

CHAPTER

SEVEN

CONTROL VIA ETHERNET

7.1 Network configuration

Connecting the controller via a local network:

By default, to obtain the device’s IP address, use DHCP. But if necessary, you can use a static IP address. The
controller and your PC must be on the same subnet!

• Your DHCP server must supports an automatic distribution of ip addresses.

• Server and your computer must support IPv4 protocol.

mDrive can also be used when directly connected to a PC with a working DHCP server.

If the DHCP server is unavailable, mDrive independently assigns itself an IP address in the range 169.254.1.0 -
169.254.254.255.

7.1.1 mDrive controller detection on the network with a DHCP server
In Windows Explorer, go to the “Network” tab and find mDrive controller.

Go to the web interface of the device by double-clicking on it with the left mouse button.

7.1.2 Automatic device detection
As a convenience we provide a small dedicated utility called “Revealer” in order to help you instantly identify all the
mDrive controller connected to your local network. You can download it from our software page .

298

https://files.mdrive.tech/ru/product/mDrive/

mDrive User Manual, Release 3.1.2

Fig. 7.1: “Revealer” utility interface

The Graphical User Interface of the “Revealer” is a simple one. In order to start search click Search button on Search
settings panel - the scan takes approximately 3 seconds. After that all mDrive devices found in your local network will
be listed on Available devices panel as clickable links. When clicked, the link opens your defaul system browser and
redirects it to Administartion interface web page.

The utility requires Java Runtime Environment (or simply JRE) version 6 or greater to work. There are high chances
that you already have it installed on your PC as it’s the requirement for a great number of popular software packages
and so you just need to double-click the “revealer-j_0.1.0.jar” file to launch the utility.

Otherwise it means that you don’t have JRE installed and have two options:

1. Download our ready-made packages for your operating system containing the “Revealer” utility and all the stuff
necessary to make it work. In this case you just need to launch “Revealer” executable.

2. Install JRE. A good candidate is Oracle JRE which you can install following the official instructions.

Warning: “Revealer” uses UDP broadcasts to reach all mDrive devices in your LAN so it might be unusable in
the environments where UDP broadcasts are forbidden or unwanted.

7.1.3 mDrive controller detection on the network with a static IP address
To discover a device and change its IP address, change the network connection settings by following the steps:

1. Go Start -> Settings

7.1. Network configuration 299

mDrive User Manual, Release 3.1.2

2. Select “Network & Internet” in the Settings window

3. Click “Change adapter options”

7.1. Network configuration 300

mDrive User Manual, Release 3.1.2

4. Right-click on the active local connection and click “Properties”

5. In the Network connection properties window, select the “Internet Protocol version 4 (TCP/IPv4)” component
and click the “Properties” button

7.1. Network configuration 301

mDrive User Manual, Release 3.1.2

6. In the “Use the following IP address” item, find the IP address and subnet mask. Remember their current values
so that you can return to them later.

7. Change your IP address to any other from the range 169.254.1.0 - 169.254.254.255, set the subnet mask value
to 255.255.0.0. Click “OK”.

8. Find mDrive and change its IP address by following the steps:

7.1. Network configuration 302

mDrive User Manual, Release 3.1.2

1. In Windows Explorer, go to the “Network” tab. Right-click on the alert, then select “Enable Network
discovery and File sharing” then select “No, make the network to which this computer is connected
private”

2. Update the “Network” tab. Make sure that the device named “mDrive Motor Controller [S/N #]”
(where # is the serial number of the device) is displayed.

9. Go to the web interface of the device by double-clicking on it with the left mouse button.

10. In the “Network settings” block, enter the IP address and subnet mask in which the device should be located. Click
“Apply”

11. Confirm the actions in the warnings that open.

12. Return the original network connection settings by following steps 1 - 6 of this instruction. Note that in step 6 the
IP address and subnet mask must be set in accordance with the original values.

7.2 mDrive web interface

The web interface contains information about the mDrive network settings, general information about the device and
a brief table of characteristics.

7.2. mDrive web interface 303

mDrive User Manual, Release 3.1.2

Fig. 7.2: mDrive web interface

7.3 Getting started with mDrive Direct Control

Launch mDrive Direct Control and make the following. It is assumed that the connection and configuration instruc-
tions have been followed.

At first start, mDrive Direct Control opens controller detection window with two virtual devices.

Click Settings, check Enumerate network devices in the right tab. Enter the IP address of the mDrive Motor Controller
and do not forget to specify the port. Select the “xi-tcp://” protocol.Then click Rescan button in the left tap, mDrive
Direct Control will find connected controller.

7.3. Getting started with mDrive Direct Control 304

mDrive User Manual, Release 3.1.2

In controller detection window choose an axis you need. You can control it in single-axis mode or in multi-axis mode if
more than one axis was chosen. For additional information please refer to Getting started with mDrive_Direct_Control
software and mDrive Direct Control application User’s guide.

Note: Once the device IP address has been found, it should be understood that moving the device to another location
may lead to a change in its IP.

7.3. Getting started with mDrive Direct Control 305

CHAPTER

EIGHT

FAQ

8.1 No device found / Can’t open device

• Connect via USB

• Connect via ETHERNET

– If the mDrive is not found on the local network

8.1.1 Connect via USB
mDrive Direct Control or other software can not find the controller.

• The PC does not detect the controller via USB:

Comment to the scheme:

The most common cause for such type of problem is bad work of the usb-hub, cables or the virtual COM-port identi-
fication problem of the operation system on the used PC. Try to reproduce the problem on the another PC or another
usb-hub if it is used.

Warning: “Can’t open device” error or “open_device()” function returns -1. mDrive library opens the
controller in exclusive access mode. Any controller opened with mDrive library (mDrive Direct Control also uses
this library) needs to be closed before it may be used by another process. So at first check that you have closed
mDrive Direct Control or other software dealing with the controller before trying to reopen the controller.

Below are the action maps for the not found controller.

Windows:

306

mDrive User Manual, Release 3.1.2

Comments to the scheme:

• Check whether the COM-port corresponding to your controller presents in the Device manager. It should be
displayed as “mDrive Motor Controller (COMn)”. In case the controller has not been recognized, try to reinstall
the driver for the controller manually.

• Try to open the COM-port of the controller in any simple serial emulator (Putty for example) and just send the
simple command to the controller (like “stop”, “sstp”, “zero”, “GETS”, “GETI”). The connection parameters
are described here. The absence of errors means that the controller is operating correctly and the problem should
be caused by the used software.

Linux:

Comment to “Can’t open device” problem solution:

When working with USB-UART converter (as well as USB-Ethernet, USB-Bluetooth etc.) in Linux it appears as
/dev/ttyUSB device. mDrive Direct Control shows it in a list, but when you try to open it, an error “can’t open device”
occurs due to the lack of permissions to the device.

To solve this problem, create a file: /etc/udev/rules.d/60-mdrive.rules and add the next line into it:

SUBSYSTEM=="usb", ATTR{idVendor}=="067b", MODE="0666"

idVendor identifier can be found by executing lsusb command.

8.1. No device found / Can’t open device 307

https://files.mdrive.tech/ru/product/mDrive/

mDrive User Manual, Release 3.1.2

Note: One possible solution to the “device not found” problem is to add a user to the dialuot group. Important:
after adding it, you must restart your computer.

Mac OS:

8.1.2 Connect via ETHERNET

Note: When performing the steps described below, it is assumed that the controller is turned on and running. The
controller connected via Ethernet can be opened via tcp/udp protocol.

• Is your controller visible in the “Revealer” program?

If yes:

– To access the administration panel, click on the IP address. If the control panel opens (by default,
use “0000” as the password), your controller works fine!

If no:

– Connect the controller to your computer via USB:

* Make sure that the USB-connected controller is working correctly. To do this, upload the profile
and perform any movements. We recommend using mDrive Direct Control for verification

– Disable “Windows Defender Firewall”

– Connect the controller to the computer using an Ethernet cable:

* Check that the controller is visible in an isolated network using revealer.

* Use revealer to change the IP address of your controller. To change the settings in the revealer
window, click on the gears. For example, you can set a static IP address for your controller.

• Is a DHCP server installed on your network?

If yes:

– Make sure that the controller is assigned an IP address.

– Make sure that the controller is on the same subnet as your computer.

If no:

– You can install a DHCP server.

– Use revealer to set the static IP address of your controller. To change the settings in the revealer
window, click on the gears.

8.1. No device found / Can’t open device 308

https://files.mdrive.tech/ru/product/mDrive/

mDrive User Manual, Release 3.1.2

8.1.2.1 If the mDrive is not found on the local network

Disable “Windows Defender Firewall” and click the “Search/Restart” button in mDrive Direct Control program. In
order to get access to the Administration panel, navigate your browser to http://[address] URL (where [address]
should be replaced with IP address of the device in your local network and can be found in Revealer or in the network
tab of windows Explorer). If you are doing this for the first time (or you’ve disabled cookies/password storage in your
browser) you’ll need to authenticate yourself using “0000” as password.

If the control panel opens, your mDrive works fine.

Go to drive Direct Control, click Settings, check the Enumerate network devices box on the right side of the window,
enter the IP address and click Rescan. Your device should be displayed in mDrive Direct Control.

8.1. No device found / Can’t open device 309

mDrive User Manual, Release 3.1.2

After that, don’t forget enable firewall.

8.2 Unable to rotate the motor by the controller

• Controller has Alarm state

• Motor vibrates without rotation

• Mechanical jamming

• The motor does not react on move commands

8.2.1 Controller has Alarm state

Note: Click Stop in the main window of mDrive Direct Control. Controller must return to its normal state.

If this approach was not helpful and Alarm state emerged again, do the following:

• Being in mDrive Direct Control go to the Maximum ratings tab.

• Mark Sticky Alarm flags option. Click Ok.

• Press Stop in the main window of mDrive Direct Control, it will temporary return controller to its normal state.
Repeat the sequence of actions leading to Alarm state.

• Make the screenshot of mDrive Direct Control main window and send it to the technical support with detailed
description of your problem.

8.2.2 Motor vibrates without rotation
This problem has several reasons:

• Installed incorrect profile for your motor/stage.

8.2. Unable to rotate the motor by the controller 310

mDrive User Manual, Release 3.1.2

– Search for a better match for the title of profile used by your motorized stage in mDrive Direct Control
folder.

– It is recommended to save your current configuration to file. To do this, in the Settings window of mDrive
Direct Control click Save settings to file (see mDrive Direct Control settings), choose path where you want
to save the settings. Then send this file in technical support with detailed description of the problem.

• Incorrect configuration of limit switches, as result the stage rests the limit switch. This can usually be seen by
the indicator lights in mDrive Direct Control.

8.2. Unable to rotate the motor by the controller 311

mDrive User Manual, Release 3.1.2

The main reason for the incorrect setting of limit switches is incorrect configuration file for your stage (see
previous item). Information about manual setting is located in manual profile setting. When such problem is
emerged it is recommended to contact the technical support for further assistance.

– It is also one of the consequences of problems with limit switches can be mechanical jamming (see the
next item).

• Broken winding of the motor, problems with bad contact in connector etc. It is possible to diagnose this kind
of problems independently. For this purpose, we recommend to get mDrive Direct Control graphs of voltage
and current during the operation of motor. The proper motor current in the winding varies according to a sine or
cosine. In the broken motor much stronger differences of the current from harmonic form can be noticed.

8.2. Unable to rotate the motor by the controller 312

mDrive User Manual, Release 3.1.2

Fig. 8.1: Working case

In the charts below you can see the problems. For example, winding B is open circuit. Probably it is broken.
Also, voltage and current forms are distorted.

8.2. Unable to rotate the motor by the controller 313

mDrive User Manual, Release 3.1.2

Fig. 8.2: There are problems with motor

To diagnose the problem set very low speed (1 s/sec is optimal) and send movement command. Then turn on graphs of
current and voltage for windings A and B in mDrive Direct Control and the Power current (button Charts, then mark
correspond fields). Wait for a while until the graphs are built. Then it is recommended to send them (Click Save in the
same window with graphs) in technical support with a detailed description of the problem. Sometimes, when winding
is broken, it is impossible to use mDrive Direct Control due to permanent loss of device. In this case also contact
technical support with description of the problem.

8.2. Unable to rotate the motor by the controller 314

mDrive User Manual, Release 3.1.2

8.2.3 Mechanical jamming
There are two ways to deal with jamming:

• Turn the motorized stage by hands if it is possible.

• Increase the winding current 2-3 times for a short time (about 5-10 seconds) and send movement command
to the stage in the right direction at the low speed (about 50-100 s/sec will be enough). A few seconds after
rotation, press stop button (small black square) until power off status appears in the main window of mDrive
Direct Control in order to prevent motor overheating. After this do not forget to return the settings back!

8.2.4 The motor does not react on move commands
The controller looks OK but the motor does not move, leaving error messages in the log, the controller reboots. This
bug can arise due to extremely wrong calibration setting of the controller. This happen when the predicted values of
the electrical parameters of the motor differ for several orders from the right ones. The wrong calibration sometimes
could be caused by the mechanical load on the motor or by differ of mechanical friction in both directions of moving
that affects the calibration. So the controller tryes to make a little movement to calibrate the motor (the calibration is
performed before the motor power on) and goes down due to the overcurrent protection.

If you encounter this problem just do the following:

• Open mDrive Direct Control, load the profile for used motor.

• On the Stepper motor tab of Settings menu change the nominal current to 200 mA, change the working speed to
1 step/s, click Apply and Save settings to flash.

• Try to start moving, watch the current parameters of the motor via Charts like it was described above.

• If the charts look OK, then load the normal setting for used motor and work with it as usual.

8.3 When using the mDrive library and Linux with kernel version less
than 3.16, there are possible hanging of the operating system

Comment: above-mentioned problem stems from the error in serial port driver cdc-acm. It is observed with frequent
sequential opening and closing of some devices. Operation system hanging was shown on Debian 7 (3.2 kernel
version) and worked correctly on Debian 8 (3.16 kernel version). For additional information about problem please
refer to the next link.

Solution: update your current version of Linux.

8.4 USB connection loss

The most common cause of this kind of problem lies in grounding. To find out the reason for the permanent loss of
the USB connection, you should:

• If the controller and/or stage is fasten to a metal table, temporarily put something dielectric under it or transfer
it to a dialectric surface;

• Ground the computer;

• Ground the controller;

• Ground stage;

Note: If the above steps eliminated the problem of losing the USB connection, then the problem was the grounding
of your metal table. There were fluctuations of electrical potential on it.

8.3. When using the mDrive library and Linux with kernel version less than 3.16, there are possible
hanging of the operating system

315

https://github.com/torvalds/linux/commit/7fb57a019f94ea0c1290c39b8da753be155af41c

mDrive User Manual, Release 3.1.2

• Change USB cable. Use verified USB cables only! Damaged or low-quality USB cable may cause improper
controller operation, including motor rotation errors and errors of device recognition by PC operating system.
Super short cables with thick wires and screening are ideal for sustainable connection;

• Change USB port;

• Change PC.

Fig. 8.3: Example of correct grounding

8.5 probe_flag - what is it?

probe_flags = 1 + 4; % ENUMERATE_PROBE and ENUMERATE_NETWORK

“probe_flag” is a parameter passed to the mDrive library “enumerate_devices” function. It controls how libximc.dll
does search for devices.

define ENUMERATE PROBE 0x01

Check if a device with OS name is mDrive device. Be carefuly with this flag because it sends some data to the
device!

define ENUMERATE NETWORK 0x04

Check network devices.

Note: Depending on the type of controller connection, you can remove this or that flag

8.6 Virtual controller as in mDrive Direct Control Software

You can use the virtual controller in your programs. To do this, use the function:

8.5. probe_flag - what is it? 316

mDrive User Manual, Release 3.1.2

device_t XIMC_API open_device (const char *uri)

Open a device with OS uri and return identifier of the device which can be used in calls.

Parameters uri- a device uri. Device uri has form:

"xi-com:port" - # Serial port
"xi-udp://<ip/host>:<port>" - # Raw UDP connection
"xi-tcp://<ip/host>:<port>" - # Raw TCP connection
"xi-emu:///file" - # Virtual device

For example:

"xi-com:\\.\COM3 # in Windows
"xi-com:/dev/tty.s123"` # in Linux/Mac

In case of network device the “host” is an IPv4 address or fully qualified domain uri (FQDN), “serial” is the device
serial number in hexadecimal system.

In case of UDP/TCP protocol, use “xi-udp://<ip/host>:<port>” “xi-tcp://<ip/host>:<port>”.

For example:

"xi-udp://192.168.0.1:1818"
"xi-tcp://192.168.0.1:1820"

In case of virtual device the “file” is the full filename with device memory state, if it doesn’t exist then it is initialized
with default values.

For example:

"xi-emu:///C:/dir/file.bin" # in Windows
"xi-emu:///home/user/file.bin" # in Linux/Mac

You can also use a virtual controller from mDrive Direct Control with a loaded profile. To do this, select and open
the virtual controller in mDrive Direct Control. After loading the required profile (”Settings” -> “Load setting from
file. . . ” button) or just set the necessary parameters and click “Apply”. Then the file will be saved to the directory
C:\Users\user\AppData\Roaming\XILab.conf/V_x, where x - is the number of the virtual controller.

In your program you can open this virtual controller by specifying the full path to the file. For example:

device_name = "xi-emu:///C:\Users\"user"\AppData\Roaming\XILab.conf/V_1";
device = open_device(device_name);

Attention: The profile loading function is only implemented in the mDrive Direct Control interface. If you need
to change the stage settings during code execution, you can use an alternative option. You can upload the profile
to the controller flash memory. Open mDrive Direct Control->Settings->Load setting from file. . . ->choose your
profile->OK->Apply->Save settings to flash. Then you can change the settings in your program. As soon as you
want to return all the default settings, execute the Command READ.

8.7 Python CRC algorithm

Below is an example of our CRC-16/MODBUS algorithm, which is written in Python.

8.7. Python CRC algorithm 317

mDrive User Manual, Release 3.1.2

def crc16(data: bytes):
crc = 0xffff
for cur_byte in data:
crc = crc ^ cur_byte
for _ in range(8):

a = crc
carry_flag = a & 0x0001
crc = crc >> 1
if carry_flag == 1:

crc = crc ^ 0xa001
return bytes([crc % 256, crc >> 8 % 256])

data = b"\x00\x00\x00\xC8\x00\x00\x00\x00\x00\x00\x00\x00"
crc = crc16(data)

crc_str = " ".join("{:02x}".format(x) for x in crc)
print(crc_str)

Note: At this link you can find the CRC-16/MODBUS algorithm written in C#, Java and PHP, found on the open
source Internet.

The developer is responsible for executing the code.

8.8 Where can I find the programming manual for the mDrive con-
troller?

The programming guide is included in archive, which can be obtained by e-mail upon request support@mdrive.tech.
It is located in ../doc-en/mdrive7-en.pdf.

The programming guide is Doxygen-based.

8.9 How do I implement an emergency stop button?

To implement an emergency stop button you will need to use a General purpose digital input/output, (pins 9. EXTIO
IN 1 and 18. DGND, digital ground) located on the DVI-I connector.

Using the mDrive library, you will need to set the 0x5 - EXTIO_SETUP_MODE_IN_ALARM flag (see Command
SEIO).

If you using mDrive Direct Control, you need to uncheck the “IO pin is output” in the EXTIO settiongs and then select
“Alarm on input” from the drop-down list.

8.8. Where can I find the programming manual for the mDrive controller? 318

https://github.com/meetanthony
mailto:support@mdrive.tech

mDrive User Manual, Release 3.1.2

Important: It is recommended to use an ALARM for the emergency stop button, because the ALARM will not allow
you to perform any actions until it is reset (reset occurs using the stop button or when calling the stop command). If
another command is used instead of an ALARM, for example “stop” or “power off”, then when any move command
(MOVE/MOVR/LEFT/RIGT) is called, the movement will continue, despite the fact that the button is pressed.

The emergency button function does not provide a smooth stop!

8.10 How to get a mDrive Direct Control window that has disappeared
off the screen?

All data from installed programs is stored in a hidden AppData folder (settings, bookmarks, history, saves, etc). One
of the following steps will help you recover your lost mDrive Direct Control window:

Default mDrive Direct Control settings Go to the directory C:\Users\<your_user>\AppData\Roaming -> find the
xilab.conf folder -> rename it or delete it. After that, the mDrive Direct Control settings will be restored to default and
all lost windows should return.

You can also manually change the window size. To do this, in the xilab.conf folder, find the file with the serial number
of your controller, for example: SM123.cfg, open it with any text editor and change the fields:

[settingsWindow_params]
position = @ Point (411 1057)
size = @ Size (722 286)

Arrange the windows in a cascade Click the right mouse button on the taskbar. Select “cascade windows”. All open
programs will appear in front of you and you can sort them.

Enable display detection Right - click on the desktop and select “screen settings”. Then click the Open button.
Windows will return the missing Windows to the screen. This helps if the problem occurs due to the presence of
multiple monitors.

Change the screen resolution Right - click on the desktop and select “screen settings”. In the window that opens,
change the permission to another one that is available to you. Windows will move all Windows that go off the screen
back to the display. After that, you can return the permission that you had by default.

Use the keyboard shortcut First of all, make the “escaped” program window active. In other words, select it with the
mouse on the taskbar, or use Alt+Tab to switch to it. Press Alt+space. It opens a special system menu of the active
window. Then click the down arrow on your keyboard and select the second item — Move. Press Enter. Now, after
pressing Enter, the window is ready to move. Press the left or right key on your keyboard and start moving the window.
Continue holding the arrow key until the entire outline is on the visible desktop. Then press Enter.

8.10. How to get a mDrive Direct Control window that has disappeared off the screen? 319

mDrive User Manual, Release 3.1.2

8.11 How to check if the connection to mDrive is established and still
active during my session using the mDrive library?

To constantly check for a connection between the controller and the mDrive library, send the get_status command at
regular intervals in the loop.

result_t XIMC_API get_status (device_t id, status_t *status)

The method described above can be implemented in any program that uses the mDrive library.

Note: A similar connection verification method is implemented in mDrive Direct Control

8.12 Raspberry Pi control

Important: Almost all ARM single-board computers are supported (Raspberry Pi 1/2/3/4/. . . , NanoPi, Cubieboard,
and so on). The only limitation is that the ARM core must be version 7 or higher

8.12.1 Working with mDrive Direct Control software on ARM processor

Important: mDrive Direct Control will not run on ARM processor!

8.12.2 Working with mDrive library on an ARM processor
To work on Linux, you need to install two packages of target architectures. For install packages, you can use the .deb
command: dpkg -i filename.deb, where “filename.deb” is the name of the package (packages in Debian have
the extension .deb). You must run dpkg with superuser privileges (root).

In a Linux-based OS, mDrive controllers must be recognized as a ttyACMn device and have a symbolic link in
/dev/mdrive/

The controller may not be found in the system due to lack of access rights to the device. To solve this problem, create
a file: /etc/udev/rules.d/60-mdrive.rules and add the following line to it: SUBSYSTEM=="usb",
ATTRS{idVendor}=="067b", MODE="0666"

The ID idVendor can be found by running the command lsusb. Also, one of the possible solutions to the “no device
found” problem is to add a user to the dialout group. Important: After adding a user to the group, you need to restart
the computer.

mDrive library is a cross-platform library that supports C++, C#, Delphi, Visual Basic, Matlab, Java and Python
languages. The examples included in the library package are intended for quick acquaintance with the programming
for mDrive controllers. The mDrive library sources are available on request by mail support@mdrive.tech.

8.11. How to check if the connection to mDrive is established and still active during my session
using the mDrive library?

320

mailto:support@mdrive.tech

	About
	General information
	Benefits
	Main benefits
	All benefits

	General technical specifications
	Specifications
	Motor requirements
	Electric specifications of the controller
	Rotation control features
	Additional firmware features
	Additional features available via DVI-I connector
	Programming the controller

	Safety instructions
	Quick start guide
	Overview and getting started
	Introduction
	Requirements
	Software installation and startup procedures
	Getting started with mDrive Direct Control software
	Functional test
	Control from user applications

	Example of a motor connection
	General case
	Example
	Preparation
	Connecting the motor and encoder to the controller

	Manual profile setting
	Introduction
	Getting started
	Nominal current setting
	Basic parameters setting
	Hardware limit switches setting. Homing.
	Encoder parameters setting
	Setting the kinematic characteristics of the controller
	Working with user units

	Calculation of the nominal current
	Calculation based on the parameters of unipolar full step mode
	Calculation based on the parameters of bipolar full step mode
	The relationship with an rms current
	Amplitude and rated current for BLDC
	Setting the nominal current

	Technical specification
	Appearance and connectors
	Controller board
	Dimensions and arrangement
	Controller board connectors
	Stage connector

	One axis system
	Connectors
	Stage connector
	Power supply connector
	Data connector
	Joystick connector

	Multi-axes system
	Enclosure view
	Connectors
	Stage connector
	Power supply connector
	Data connector
	Joystick connector

	Kinematics and rotation modes
	Predefined speed rotation mode
	Rotation for predefined point
	Predefined displacement mode
	Acceleration mode
	Backlash compensation
	Rotation reversal
	Recommendations for accurate rotation
	PID-algorithm for BLDC engine control
	PID-algorithm description
	Particular properties of the algorithm
	PID regulator coefficients
	Reaching target position

	PID regulator manual tuning
	Steps to adjust the coefficients:

	Feedback EMF
	Advantages
	Behavior of the engine when exposed to an external force
	Selecting L, R, and backEMF parameters for EMF algorithm
	The choice of PID coefficients for EMF
	Operation algorithm

	Feedback encoder
	Feedback encoder mediated
	Stop motion modes
	Immediate stop
	Stop with deceleration

	Main features
	Supported motor types
	Stepper motors
	BLDC motors
	Engine selection criteria

	Motor limiters
	Limit switches
	Limit switches designation
	General settings
	Programmable motion range limitation
	Hardware limit switches
	Limit switches connecting instructions
	Limit switches location on translators

	Automatic Home position calibration
	Standard homing algorithm
	Accurate additional calibration
	Fast homing algorithm
	Autocalibration features

	Operation with encoders
	Application of encoders
	What is quadrature encoder?
	Controller’s features
	Encoder connection
	Operation with long cables
	Automatic encoder type detection

	Revolution sensor
	Connection diagram

	Steps loss detection
	Power control
	Current consumption reduction
	The motor power shutdown
	Time delay calculation specifics
	Jerk free function

	Critical parameters
	Saving the parameters in the controller flash memory
	User defined position units
	Usage of a coordinate correction table for more accurate positioning

	Safe operation
	Movement range bounds and limit switches
	Movement range limiters
	Critical Parameters
	Operation with Encoder

	Additional features
	Indication
	Controller status

	Operations with magnetic brake
	Description of operation
	Controller operating sequence during stage shutdown.

	Magnetic brake connection diagram

	Joystick control
	General information
	Connection diagram
	Connecting a joystick whose voltage does not exceed 3.3 V
	Connecting a 5 V joystick

	Left-Right buttons control
	Connection diagram
	One-axis and multi-axis systems

	TTL synchronization
	Principle of operation
	Connection
	Sync in
	Sync out
	Connection diagram

	Multiaxis system design
	General purpose digital input-output (EXTIO)
	Connection diagram

	General purpose analog input
	Connection diagram
	One-axis and multi-axes systems

	Saving the position in FRAM memory

	Secondary features
	Zero position adjustment
	User-defined position adjustment
	Controller status
	Movement status
	Motor power supply status
	Encoder status
	Motor windings status
	Position status
	Controller power supply status and temperature
	Status flags
	Digital signals status

	USB connection autorecovery

	mDrive Direct Control application User’s guide
	About mDrive Direct Control
	Main windows of the mDrive Direct Control application
	mDrive Direct Control Start window
	mDrive Direct Control Main window in single-axis control mode
	Motion Control Unit
	Movement without specifying the final position
	Movement to the target point
	Target position for motion commands

	Controller and motor status
	Controller Power Supply
	Motor status
	Program status

	Group of application control buttons
	Status bar

	mDrive Direct Control Main window in multi-axis control mode
	Motion control block
	Virtual joystick block
	Control block
	Block of status indicators for controllers and motors

	Application settings
	Charts
	Values displayed on the charts
	Button functions
	Limit value

	Scripts
	Button functions

	mDrive Direct Control log

	Controller Settings
	Settings of kinematics (stepper motor)
	Motor parameters - directly related to the electric motor settings
	Motion setup - movement kinematics settings
	Feedback settings

	Motion range and limit switches
	Critical board ratings
	Power consumption settings
	Home position settings
	Synchronization settings
	Brake settings
	Position control
	Settings of external control devices
	General purpose input-output settings
	Motor type settings
	Settings of PID control loops
	About controller
	Settings of kinematics (BLDC motor)
	Motor parameters - electric motor settings
	Motion setup - settings related to the movement kinematics
	Feedback settings

	mDrive Direct Control application settings
	General motor settings
	Cyclical motion settings
	Log settings
	Charts general settings
	Charts customization
	User units settings
	User units
	Coordinate correction table for more accurate positioning

	About the application

	Correct shutdown
	mDrive Direct Control installation
	Installation on Windows
	Installation on Linux
	Installation on MacOS

	Programming
	Programming guide
	Working with controller in Visual Studio
	A short description of the work with supported by programming languages
	Visual C++
	.NET (C#)
	Python

	Communication protocol specification
	Protocol description
	Command execution
	Controller-side error processing
	Wrong command or data
	CRC calculation
	Transmission errors
	Timeout resynchronization
	Zero byte resynchronization

	Library-side error processing
	Library return codes
	Zero byte synchronization procedure

	Controller error response types
	ERRC
	ERRD
	ERRV

	All controller commands
	Command GACC
	Command GBRK
	Command GCAL
	Command GCTL
	Command GCTP
	Command GEAS
	Command GEDS
	Command GEIO
	Command GEMF
	Command GENG
	Command GENI
	Command GENS
	Command GENT
	Command GEST
	Command GFBS
	Command GGRI
	Command GGRS
	Command GHOM
	Command GHSI
	Command GHSS
	Command GJOY
	Command GMOV
	Command GMTI
	Command GMTS
	Command GNET
	Command GNME
	Command GNMF
	Command GNVM
	Command GPID
	Command GPWD
	Command GPWR
	Command GSEC
	Command GSNI
	Command GSNO
	Command GSTI
	Command GSTS
	Command GURT
	Command SACC
	Command SBRK
	Command SCAL
	Command SCTL
	Command SCTP
	Command SEAS
	Command SEDS
	Command SEIO
	Command SEMF
	Command SENG
	Command SENI
	Command SENS
	Command SENT
	Command SEST
	Command SFBS
	Command SGRI
	Command SGRS
	Command SHOM
	Command SHSI
	Command SHSS
	Command SJOY
	Command SMOV
	Command SMTI
	Command SMTS
	Command SNET
	Command SNME
	Command SNMF
	Command SNVM
	Command SPID
	Command SPWD
	Command SPWR
	Command SSEC
	Command SSNI
	Command SSNO
	Command SSTI
	Command SSTS
	Command SURT
	Command ASIA
	Command CLFR
	Command CONN
	Command DBGR
	Command DBGW
	Command DISC
	Command EERD
	Command EESV
	Command GBLV
	Command GETC
	Command GETI
	Command GETM
	Command GETS
	Command GFWV
	Command GOFW
	Command GPOS
	Command GSER
	Command GUID
	Command HASF
	Command HOME
	Command IRND
	Command LEFT
	Command LOFT
	Command MOVE
	Command MOVR
	Command PWOF
	Command RDAN
	Command READ
	Command RERS
	Command REST
	Command RIGT
	Command SARS
	Command SAVE
	Command SPOS
	Command SSER
	Command SSTP
	Command STMS
	Command STOP
	Command UPDF
	Command WDAT
	Command WKEY
	Command ZERO

	mDrive library timeouts
	mDrive Direct Control scripts
	Brief description of the language
	Data Types
	Statements
	Variable statements
	Reserved words
	Functions

	Syntax highlighting
	Additional mDrive Direct Control functions
	mDrive Direct Control log
	Script execution delay
	New axis object creation
	New file object creation
	Creation of calibration structure
	Get next serial
	Wait for stop
	mDrive library functions

	Examples
	Bit mask example script
	A script which scans and writes data to the file
	Multi axis cyclic movement script
	Single axis cyclic movement script
	Homing test script
	List axis serials script
	Move and wait script
	Random shift script
	Set zero scrip
	Border crossing test
	Closed loop tuning test
	Discrete motion script
	Exponential position change in user units script
	For calb step script
	Step script
	Homing test with extio
	Motion by sin function
	Move EXTIO calb script
	Probabilistic tests
	Several shifts with calibration script
	Steps loss test
	Sync test script

	Control via Ethernet
	Network configuration
	mDrive controller detection on the network with a DHCP server
	Automatic device detection
	mDrive controller detection on the network with a static IP address

	mDrive web interface
	Getting started with mDrive Direct Control

	FAQ
	No device found / Can’t open device
	Connect via USB
	Connect via ETHERNET
	If the mDrive is not found on the local network

	Unable to rotate the motor by the controller
	Controller has Alarm state
	Motor vibrates without rotation
	Mechanical jamming
	The motor does not react on move commands

	When using the mDrive library and Linux with kernel version less than 3.16, there are possible hanging of the operating system
	USB connection loss
	probe_flag - what is it?
	Virtual controller as in mDrive Direct Control Software
	Python CRC algorithm
	Where can I find the programming manual for the mDrive controller?
	How do I implement an emergency stop button?
	How to get a mDrive Direct Control window that has disappeared off the screen?
	How to check if the connection to mDrive is established and still active during my session using the mDrive library?
	Raspberry Pi control
	Working with mDrive Direct Control software on ARM processor
	Working with mDrive library on an ARM processor

